Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces

被引:6
作者
Behrndt, Jussi [1 ]
Leben, Leslie [2 ]
Martinez Peria, Francisco [3 ,4 ]
Moews, Roland [2 ]
Trunk, Carsten [2 ]
机构
[1] Graz Univ Technol, Inst Numer Math, Steyrergasse 30, A-8010 Graz, Austria
[2] Tech Univ Ilmenau, Inst Math, Postfach 100565, D-98684 Ilmenau, Germany
[3] Univ Nacl La Plata, Dept Matemat, Fac Ciencias Exactas, CC 172, RA-1900 La Plata, Buenos Aires, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Inst Argentino Matemat Alberto P Calderon, Saavedra 15, RA-1083 Buenos Aires, DF, Argentina
基金
奥地利科学基金会;
关键词
Selfadjoint operator; Krein space; Rank one perturbation; Eigenvalue estimates; Indefinite Sturm-Liouville operator; GENERALIZED NEVANLINNA FUNCTIONS; SELF-ADJOINT EXTENSIONS; LINEAR RELATION; DEFECT ONE; FACTORIZATION; SPECTRUM;
D O I
10.1016/j.jmaa.2016.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be selfadjoint operators in a Krein space and assume that the resolvent difference of A and B is of rank one. In the case that A is nonnegative and I is an open interval such that sigma(A) boolean AND I consists of isolated eigenvalues we prove sharp estimates on the number and multiplicities of eigenvalues of B in I. The general result is illustrated with eigenvalue estimates for singular indefinite Sturm-Liouville problems. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:864 / 895
页数:32
相关论文
共 54 条