Counter-example to the functional central limit theorem for real random fields

被引:0
作者
El Machkouri, M [1 ]
Volny, D [1 ]
机构
[1] Univ Rouen, Lab Math Raphael Salem, UMR 6085, F-76821 Mont St Aignan, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2003年 / 39卷 / 02期
关键词
martingale-difference random fields; metric entropy; functional central limit theorem; invariance principle;
D O I
10.1016/S0246-0203(02)00011-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the ergodic dynamical system (Omega, F, mu, T) with positive entropy where Omega is. a Lebesgue space, mu, is a probability measure and T is a measure preserving Z(d)-action, d is an element of N*. We show that, for any nonnegative real p, there is a real function f is an element of L-p(Omega) and a collection A of regular Borel sets of [0, 1](d) satisfying an entropy condition with inclusion such that (f o T-k)(kEZd) is a stationary martingale-difference random field but does not satisfy the functional central limit theorem (or invariance principle) with regard to the family A. (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:325 / 337
页数:13
相关论文
共 19 条
[1]   A UNIFORM CENTRAL-LIMIT-THEOREM FOR SET-INDEXED PARTIAL-SUM PROCESSES WITH FINITE VARIANCE [J].
ALEXANDER, KS ;
PYKE, R .
ANNALS OF PROBABILITY, 1986, 14 (02) :582-597
[2]   LAW OF THE ITERATED LOGARITHM FOR SET-INDEXED PARTIAL SUM PROCESSES WITH FINITE VARIANCE [J].
BASS, RF .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (04) :591-608
[3]   FUNCTIONAL CENTRAL LIMIT-THEOREM FOR STATIONARY MARTINGALE RANDOM FIELDS [J].
BASU, AK ;
DOREA, CCY .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 33 (3-4) :307-316
[4]   A UNIFORM CENTRAL-LIMIT-THEOREM FOR NONUNIFORM PHI-MIXING RANDOM-FIELDS [J].
CHEN, DC .
ANNALS OF PROBABILITY, 1991, 19 (02) :636-649
[5]   ENTROPY OF ABELIAN GROUP OF TRANSFORMATIONS [J].
CONZE, JP .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 25 (01) :11-30
[6]  
DEDECKER J, 1998, THESIS U PARIS 11 OR
[7]  
DEDECKER J, 2001, IN PRESS ESAIM
[8]  
Dobrushin R. L., 1974, TEOR MAT FIZ, V20, P223
[9]  
Donsker Monroe D., 1951, Mem. Amer. Math. Soc., V6, P1
[10]   SAMPLE FUNCTIONS OF GAUSSIAN PROCESS [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1973, 1 (01) :66-103