Nonlinear Hartree equation as the mean field limit of weakly coupled fermions

被引:59
作者
Elgart, A [1 ]
Erdös, L
Schlein, B
Yau, HT
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Univ Munich, Inst Math, D-80333 Munich, Germany
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2004年 / 83卷 / 10期
基金
美国国家科学基金会;
关键词
nonlinear Vlasov equation; mean field system of fermions; BBGKY hierarchy; Hartree-Fock theory;
D O I
10.1016/j.matpur.2004.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of N weakly interacting fermions with a real analytic pair interaction. We prove that for a general class of initial data there exists a fixed time T such that the difference between the one particle density matrix of this system and the solution of the nonlinear Hartree equation is of order N-1 for any time t less than or equal to T. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:1241 / 1273
页数:33
相关论文
共 15 条
[1]   ERROR BOUND FOR THE HARTREE-FOCK ENERGY OF ATOMS AND MOLECULES [J].
BACH, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (03) :527-548
[2]   Mean field dynamics of fermions and the time-dependent Hartree-Fock equation [J].
Bardos, C ;
Golse, F ;
Gottlieb, AD ;
Mauser, NJ .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (06) :665-683
[3]   ON STARS, THEIR EVOLUTION AND THEIR STABILITY [J].
CHANDRASEKHAR, S .
REVIEWS OF MODERN PHYSICS, 1984, 56 (02) :137-147
[4]   ON THE DIRAC AND SCHWINGER CORRECTIONS TO THE GROUND-STATE ENERGY OF AN ATOM [J].
FEFFERMAN, C ;
SECO, LA .
ADVANCES IN MATHEMATICS, 1994, 107 (01) :1-185
[5]   ON THE ENERGY OF A LARGE ATOM [J].
FEFFERMAN, CL ;
SECO, LA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 23 (02) :525-530
[6]   CLASS OF NON-LINEAR SCHRODINGER-EQUATIONS WITH NON LOCAL INTERACTION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (02) :109-136
[7]  
GINIBRE J, 1979, COMMUN MATH PHYS, V68, P45, DOI 10.1007/BF01562541
[8]   Mean-field approximation of quantum systems and classical limit [J].
Graffi, S ;
Martinez, A ;
Pulvirenti, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (01) :59-73
[9]   HARTREE-FOCK THEORY FOR COULOMB SYSTEMS [J].
LIEB, EH ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (03) :185-194
[10]   THOMAS-FERMI THEORY OF ATOMS, MOLECULES AND SOLIDS [J].
LIEB, EH ;
SIMON, B .
ADVANCES IN MATHEMATICS, 1977, 23 (01) :22-116