Schur-Weyl duality and the product of randomly-rotated symmetries by a unitary Brownian motion

被引:0
作者
Demni, Nizar [1 ]
Hamdi, Tarek [2 ,3 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, 39 Rue F Joliot Curie, F-13453 Marseille, France
[2] Qassim Univ, Coll Business Management, Dept Management Informat Syst, Ar Rass, Saudi Arabia
[3] Univ Tunis El Manar, Lab Anal Math & Applicat LR11ES11, Tunis, Tunisia
关键词
Brownian motion in the unitary group; Schur-Weyl duality; self-adjoint symmetries; Hermitian matrix-Jacobi process; free unitary Brownian motion;
D O I
10.1142/S0219025721500028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study a unitary matrix-valued process which is closely related to the Hermitian matrix-Jacobi process. It is precisely defined as the product of a deterministic self-adjoint symmetry and a randomly-rotated one by a unitary Brownian motion. Using stochastic calculus and the action of the symmetric group on tensor powers, we derive an ordinary differential equation for the moments of its fixed-time marginals. Next, we derive an expression of these moments which involves a unitary bridge between our unitary process and another independent unitary Brownian motion. This bridge motivates and allows to write a second direct proof of the obtained moment expression.
引用
收藏
页数:18
相关论文
共 26 条
  • [11] SPECTRAL DISTRIBUTION OF THE FREE JACOBI PROCESS ASSOCIATED WITH ONE PROJECTION
    Demni, Nizar
    Hmidi, Taoufik
    [J]. COLLOQUIUM MATHEMATICUM, 2014, 137 (02) : 271 - 296
  • [12] Spectral Distribution of the Free Jacobi Process
    Demni, Nizar
    Hamdi, Tarek
    Hmidi, Taoufik
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (03) : 1351 - 1368
  • [13] Local Eigenvalue Density for General MANOVA Matrices
    Erdos, Laszlo
    Farrell, Brendan
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (06) : 1003 - 1032
  • [14] Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras
    Haagerup, U
    Larsen, F
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 176 (02) : 331 - 367
  • [15] LIBERATION, FREE MUTUAL INFORMATION AND ORBITAL FREE ENTROPY
    Hamdi, Tarek
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 239 : 205 - 231
  • [16] Free Mutual Information for Two Projections
    Hamdi, Tarek
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (07) : 1697 - 1705
  • [17] SPECTRAL DISTRIBUTION OF THE FREE JACOBI PROCESS, REVISITED
    Hamdi, Tarek
    [J]. ANALYSIS & PDE, 2018, 11 (08): : 2137 - 2148
  • [18] ORBITAL APPROACH TO MICROSTATE FREE ENTROPY
    Hiai, Fumio
    Miyamoto, Takuho
    Ueda, Yoshimichi
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (02) : 227 - 273
  • [19] A log-Sobolev type inequality for free entropy of two projections
    Hiai, Fumio
    Ueda, Yoshimichi
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01): : 239 - 249
  • [20] REMARKS ON FREE MUTUAL INFORMATION AND ORBITAL FREE ENTROPY
    Izumi, Masaki
    Ueda, Yoshimichi
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2015, 220 : 45 - 66