Schur-Weyl duality and the product of randomly-rotated symmetries by a unitary Brownian motion

被引:0
作者
Demni, Nizar [1 ]
Hamdi, Tarek [2 ,3 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, 39 Rue F Joliot Curie, F-13453 Marseille, France
[2] Qassim Univ, Coll Business Management, Dept Management Informat Syst, Ar Rass, Saudi Arabia
[3] Univ Tunis El Manar, Lab Anal Math & Applicat LR11ES11, Tunis, Tunisia
关键词
Brownian motion in the unitary group; Schur-Weyl duality; self-adjoint symmetries; Hermitian matrix-Jacobi process; free unitary Brownian motion;
D O I
10.1142/S0219025721500028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study a unitary matrix-valued process which is closely related to the Hermitian matrix-Jacobi process. It is precisely defined as the product of a deterministic self-adjoint symmetry and a randomly-rotated one by a unitary Brownian motion. Using stochastic calculus and the action of the symmetric group on tensor powers, we derive an ordinary differential equation for the moments of its fixed-time marginals. Next, we derive an expression of these moments which involves a unitary bridge between our unitary process and another independent unitary Brownian motion. This bridge motivates and allows to write a second direct proof of the obtained moment expression.
引用
收藏
页数:18
相关论文
共 26 条
[11]   SPECTRAL DISTRIBUTION OF THE FREE JACOBI PROCESS ASSOCIATED WITH ONE PROJECTION [J].
Demni, Nizar ;
Hmidi, Taoufik .
COLLOQUIUM MATHEMATICUM, 2014, 137 (02) :271-296
[12]   Spectral Distribution of the Free Jacobi Process [J].
Demni, Nizar ;
Hamdi, Tarek ;
Hmidi, Taoufik .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (03) :1351-1368
[13]   Local Eigenvalue Density for General MANOVA Matrices [J].
Erdos, Laszlo ;
Farrell, Brendan .
JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (06) :1003-1032
[14]   Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras [J].
Haagerup, U ;
Larsen, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 176 (02) :331-367
[15]   LIBERATION, FREE MUTUAL INFORMATION AND ORBITAL FREE ENTROPY [J].
Hamdi, Tarek .
NAGOYA MATHEMATICAL JOURNAL, 2020, 239 :205-231
[16]   Free Mutual Information for Two Projections [J].
Hamdi, Tarek .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (07) :1697-1705
[17]   SPECTRAL DISTRIBUTION OF THE FREE JACOBI PROCESS, REVISITED [J].
Hamdi, Tarek .
ANALYSIS & PDE, 2018, 11 (08) :2137-2148
[18]   ORBITAL APPROACH TO MICROSTATE FREE ENTROPY [J].
Hiai, Fumio ;
Miyamoto, Takuho ;
Ueda, Yoshimichi .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (02) :227-273
[19]   A log-Sobolev type inequality for free entropy of two projections [J].
Hiai, Fumio ;
Ueda, Yoshimichi .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01) :239-249
[20]   REMARKS ON FREE MUTUAL INFORMATION AND ORBITAL FREE ENTROPY [J].
Izumi, Masaki ;
Ueda, Yoshimichi .
NAGOYA MATHEMATICAL JOURNAL, 2015, 220 :45-66