Geometric separators for finite-element meshes

被引:57
作者
Miller, GL [1 ]
Teng, SH
Thurston, W
Vavasis, SA
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Minnesota, Dept Comp Sci, Minneapolis, MN 55455 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] MIT, Comp Sci Lab, Cambridge, MA 02139 USA
[5] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[6] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[7] Xerox Corp, Palo Alto Res Ctr, Palo Alto, CA 94304 USA
关键词
graph separators; finite elements; mesh partitioning; domain decomposition; computational geometry; sparse matrix computations; conformal mapping; center points;
D O I
10.1137/S1064827594262613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a class of graphs that would occur naturally in finite-element and finite-difference problems and we prove a bound on separators for this class of graphs. Graphs in this class are embedded in d-dimensional space in a certain manner. For d-dimensional graphs our separator bound is O(n((d-1)/d)), which is the best possible bound. We also propose a simple randomized algorithm to find this separator in O(n) time. This separator algorithm can be used to partition the mesh among processors of a parallel computer and can also be used for the nested dissection sparse elimination algorithm.
引用
收藏
页码:364 / 386
页数:23
相关论文
共 50 条
  • [1] ALON N, 1990, PROCEEDINGS OF THE TWENTY SECOND ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, P293, DOI 10.1145/100216.100254
  • [2] ANGLE CONDITION IN FINITE-ELEMENT METHOD
    BABUSKA, I
    AZIZ, AK
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) : 214 - 226
  • [3] BERGER MJ, 1987, IEEE T COMPUT, V36, P570, DOI 10.1109/TC.1987.1676942
  • [4] Bern M., 1990, Proceedings. 31st Annual Symposium on Foundations of Computer Science (Cat. No.90CH2925-6), P231, DOI 10.1109/FSCS.1990.89542
  • [5] BRAMBLE JH, 1986, MATH COMPUT, V46, P361, DOI 10.1090/S0025-5718-1986-0829613-0
  • [6] CHEW LP, 1989, 89893 CORN U DEP COM
  • [7] Approximating center points with iterative radon points
    Clarkson, KL
    Eppstein, D
    Miller, GL
    Sturtivant, C
    Teng, SH
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1996, 6 (03) : 357 - 377
  • [8] Danzer Ludwig, 1963, P S PURE MATH, VVII, P101
  • [9] Dulmage A, 1958, CAN J MATH, V10, P517, DOI DOI 10.4153/CJM-1958-052-0
  • [10] Eppstein D., 1995, Fundamenta Informaticae, V22, P309