Semiparametric Bayesian inference of long-memory stochastic volatility models

被引:32
作者
Jensen, MJ [1 ]
机构
[1] Brigham Young Univ, Provo, UT 84602 USA
关键词
Dirichlet process prior; long memory; Markov chain Monte Carlo; Metropolis-Hastings; semiparametric; stochastic volatility; wavelets;
D O I
10.1111/j.1467-9892.2004.00384.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a semiparametric, Bayesian estimator of the long-memory stochastic volatility model's fractional order of integration is presented. This new estimator relies on a highly efficient, Markov chain Monte Carlo (MCMC) sampler of the model's posterior distribution. The MCMC algorithm is set forth in the time-scale domain of the stochastic volatility model's wavelet representation. The key to and centerpiece of this new algorithm is the quick and efficient multi-state sampler of the latent volatility's wavelet coefficients. A multi-state sampler of the latent wavelet coefficients is only possible because of the near-independent multivariate distribution of the long-memory process's wavelet coefficients. Using simulated and empirical stock return data, we find that our algorithm produces uncorrelated draws of the posterior distribution and point estimates that rival existing long-memory stochastic volatility estimators.
引用
收藏
页码:895 / 922
页数:28
相关论文
共 74 条
[21]   On the log periodogram regression estimator of the memory parameter in long memory stochastic volatility models [J].
Deo, RS ;
Hurvich, CM .
ECONOMETRIC THEORY, 2001, 17 (04) :686-710
[22]   ON THE CORRELATION STRUCTURE OF THE WAVELET COEFFICIENTS OF FRACTIONAL BROWNIAN-MOTION [J].
DIJKERMAN, RW ;
MAZUMDAR, RR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (05) :1609-1612
[23]  
DOORNIK DF, 2001, OX OBJECT ORIENTED M
[24]   BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES [J].
ESCOBAR, MD ;
WEST, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :577-588
[25]   ESTIMATING NORMAL MEANS WITH A DIRICHLET PROCESS PRIOR [J].
ESCOBAR, MD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (425) :268-277
[26]  
Ferguson T.S., 1983, Recent Advances in Statistics: Papers in Honor of Herman Chernojf on His Sixtieth Birthday, P287
[27]  
Fletcher R., 1981, PRACTICAL METHODS OP
[28]  
Fuller W.A., 1996, INTRO STAT TIME SERI, V2nd
[29]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[30]  
Geweke J., 1983, J TIME SER ANAL, V4, P221, DOI [DOI 10.1111/J.1467-9892.1983.TB00371.X, 10.1111/j.1467-9892.1983.tb00371.x]