Forecasting global atmospheric CO2

被引:64
作者
Agusti-Panareda, A. [1 ]
Massart, S. [1 ]
Chevallier, F. [2 ]
Boussetta, S. [1 ]
Balsamo, G. [1 ]
Beljaars, A. [1 ]
Ciais, P. [2 ]
Deutscher, N. M. [3 ]
Engelen, R. [1 ]
Jones, L. [1 ]
Kivi, R. [4 ]
Paris, J. -D. [2 ]
Peuch, V. -H. [1 ]
Sherlock, V. [2 ]
Vermeulen, A. T. [5 ]
Wennberg, P. O. [6 ]
Wunch, D. [6 ]
机构
[1] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
[2] UVSQ, CNRS, CEA, Lab Sci Climat & Environm,IPSL, Gif Sur Yvette, France
[3] Inst Environm Phys, Bremen, Germany
[4] Finnish Meteorol Inst, Sodankyla, Finland
[5] Energy Res Ctr Netherlands, Petten, Netherlands
[6] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
CARBON-DIOXIDE; VERTICAL PROFILES; MODEL; TRANSPORT; FLUXES; SIMULATIONS; EMISSIONS; ALGORITHM; EXCHANGE; METHANE;
D O I
10.5194/acp-14-11959-2014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-today synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-today variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 products retrieved from satellite measurements and CO2 in situ observations, as they become available in near-real time. In this way, the accumulation of errors in the atmospheric CO2 forecast will be reduced. Improvements in the CO2 forecast are also expected with the continuous developments in the operational IFS.
引用
收藏
页码:11959 / 11983
页数:25
相关论文
共 74 条
[1]   CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts [J].
Andrews, A. E. ;
Kofler, J. D. ;
Trudeau, M. E. ;
Williams, J. C. ;
Neff, D. H. ;
Masarie, K. A. ;
Chao, D. Y. ;
Kitzis, D. R. ;
Novelli, P. C. ;
Zhao, C. L. ;
Dlugokencky, E. J. ;
Lang, P. M. ;
Crotwell, M. J. ;
Fischer, M. L. ;
Parker, M. J. ;
Lee, J. T. ;
Baumann, D. D. ;
Desai, A. R. ;
Stanier, C. O. ;
De Wekker, S. F. J. ;
Wolfe, D. E. ;
Munger, J. W. ;
Tans, P. P. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (02) :647-687
[2]  
[Anonymous], 1986, NCAR TECHNICAL NOTE, DOI DOI 10.5065/D6668B58
[3]  
[Anonymous], 2011, GLOB CO2 COOP ATM DA
[4]   Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network [J].
Balzarolo, M. ;
Boussetta, S. ;
Balsamo, G. ;
Beljaars, A. ;
Maignan, F. ;
Calvet, J. -C. ;
Lafont, S. ;
Barbu, A. ;
Poulter, B. ;
Chevallier, F. ;
Szczypta, C. ;
Papale, D. .
BIOGEOSCIENCES, 2014, 11 (10) :2661-2678
[5]  
Bechtold P., 2009, NEWSLETTER, V120
[6]   Advances in simulating atmospheric variability with the ECMWF model:: From synoptic to decadal time-scales [J].
Bechtold, Peter ;
Koehler, Martin ;
Jung, Thomas ;
Doblas-Reyes, Francisco ;
Leutbecher, Martin ;
Rodwell, Mark J. ;
Vitart, Frederic ;
Balsamo, Gianpaolo .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (634) :1337-1351
[7]   Representing Equilibrium and Nonequilibrium Convection in Large-Scale Models [J].
Bechtold, Peter ;
Semane, Noureddine ;
Lopez, Philippe ;
Chaboureau, Jean-Pierre ;
Beljaars, Anton ;
Bormann, Niels .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (02) :734-753
[8]   Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection [J].
Belikov, D. A. ;
Maksyutov, S. ;
Krol, M. ;
Fraser, A. ;
Rigby, M. ;
Bian, H. ;
Agusti-Panareda, A. ;
Bergmann, D. ;
Bousquet, P. ;
Cameron-Smith, P. ;
Chipperfield, M. P. ;
Fortems-Cheiney, A. ;
Gloor, E. ;
Haynes, K. ;
Hess, P. ;
Houweling, S. ;
Kawa, S. R. ;
Law, R. M. ;
Loh, Z. ;
Meng, L. ;
Palmer, P. I. ;
Patra, P. K. ;
Prinn, R. G. ;
Saito, R. ;
Wilson, C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (03) :1093-1114
[9]  
Beljaars ACM, 1998, CLEAR AND CLOUDY BOUNDARY LAYERS, P287
[10]   Quantification of carbon dioxide, methane, nitrous oxide and chloroform emissions over Ireland from atmospheric observations at Mace Head [J].
Biraud, S ;
Ciais, P ;
Ramonet, M ;
Simmonds, P ;
Kazan, V ;
Monfray, P ;
O'Doherty, S ;
Spain, G ;
Jennings, SG .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2002, 54 (01) :41-60