Transformation between dense and sparse spirals in symmetrical bistable media

被引:4
作者
He, Ya-Feng [1 ,2 ]
Ai, Bao-Quan [1 ,3 ,4 ]
Hu, Bambi [1 ,5 ]
机构
[1] Hong Kong Baptist Univ, Dept Phys, Ctr Nonlinear Studies, Beijing Hong Kong Singapore Joint Ctr Nonlinear &, Kowloon Tong, Hong Kong, Peoples R China
[2] Hebei Univ, Coll Phys Sci & Technol, Baoding 071002, Peoples R China
[3] S China Normal Univ, Lab Quantum Informat Technol, ICMP, Guangzhou 510006, Guangdong, Peoples R China
[4] S China Normal Univ, SPTE, Guangzhou 510006, Guangdong, Peoples R China
[5] Univ Houston, Dept Phys, Houston, TX 77204 USA
基金
中国国家自然科学基金;
关键词
REACTION-DIFFUSION SYSTEM; SELF-REPLICATING SPOTS; PATTERN-FORMATION; EXCITABLE MEDIA; CURVED FRONTS; WAVES; DYNAMICS; PROPAGATION; GEOMETRY; LIMIT;
D O I
10.1063/1.3425868
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transformation between dense and sparse spirals is studied numerically based on a bistable FitzHugh-Nagumo model. It is found that the dense spiral can transform into two types of sparse spirals via a subcritical bifurcation: positive phase sparse spiral and negative phase sparse spiral. The choice of the two types of sparse spirals after the transformation is affected remarkably by the boundary effect if a small domain size is applied. Moreover, the boundary effect gives rise to novel meandering of sparse spiral with only outward petals. (C) 2010 American Institute of Physics. [doi:10.1063/1.3425868]
引用
收藏
页数:5
相关论文
共 32 条
[1]   ROTATING SPIRAL WAVES CREATED BY GEOMETRY [J].
AGLADZE, K ;
KEENER, JP ;
MULLER, SC ;
PANFILOV, A .
SCIENCE, 1994, 264 (5166) :1746-1748
[2]   Front propagation and pattern formation in anisotropic bistable media [J].
Bär, M ;
Hagberg, A ;
Meron, E ;
Thiele, U .
PHYSICAL REVIEW E, 2000, 62 (01) :366-374
[3]   Bifurcation and stability analysis of rotating chemical spirals in circular domains:: Boundary-induced meandering and stabilization -: art. no. 056126 [J].
Bär, M ;
Bangia, AK ;
Kevrekidis, IG .
PHYSICAL REVIEW E, 2003, 67 (05) :7-056126
[4]   TRANSITION BETWEEN FRONTS AND SPIRAL WAVES IN A BISTABLE SURFACE-REACTION [J].
BAR, M ;
NETTESHEIM, S ;
ROTERMUND, HH ;
EISWIRTH, M ;
ERTL, G .
PHYSICAL REVIEW LETTERS, 1995, 74 (07) :1246-1249
[5]   EUCLIDEAN SYMMETRY AND THE DYNAMICS OF ROTATING SPIRAL WAVES [J].
BARKLEY, D .
PHYSICAL REVIEW LETTERS, 1994, 72 (01) :164-167
[6]   Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system [J].
Berenstein, Igal ;
Munuzuri, Alberto P. ;
Yang, Lingfa ;
Dolnik, Milos ;
Zhabotinsky, Anatol M. ;
Epstein, Irving R. .
PHYSICAL REVIEW E, 2008, 78 (02)
[7]   Suppression of spirals and turbulence in inhomogeneous excitable media [J].
Chen, Jiang-Xing ;
Mao, Jun-Wen ;
Hu, Bambi ;
Xu, Jiang-Rong ;
He, Ya-Feng ;
Li, Yuan ;
Yuan, Xiao-Ping .
PHYSICAL REVIEW E, 2009, 79 (06)
[8]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[9]   Nonlinear chemical dynamics: Oscillations, patterns, and chaos [J].
Epstein, IR ;
Showalter, K .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13132-13147
[10]   Spiral wave dynamics under pulsatory modulation of excitability [J].
Grill, S ;
Zykov, VS ;
Muller, SC .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (49) :19082-19088