2-D Roger-Ramanujan Continued Fraction and Inversion

被引:0
作者
Antoniou, George E. [1 ]
Katsalis, R. A. [1 ]
机构
[1] Montclair State Univ, Dept Comp Sci, Image Proc & Syst Lab, Montclair, NJ 07043 USA
来源
ISSCS 2009: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, | 2009年
关键词
FILTERS; DELAY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper the generalized numerical Rogers Ramanujan continued fraction expansion is extended to two-dimensions(2-D). A new fast algorithm is proposed for the inversion of the 2-D Rogers - Ramanujan continued fraction expansion. The algorithm is based on matrix formulations. The simplicity and efficiency of the algorithm are illustrated by step-by-step examples.
引用
收藏
页码:53 / 56
页数:4
相关论文
共 21 条
  • [1] [Anonymous], 1973, Theory and application of the z-transform method
  • [2] 2-DIMENSIONAL MODIFIED CAUER FORM - CIRCUIT AND STATE-SPACE REALIZATION
    ANTONIOU, GE
    MANIKOPOULOS, CN
    MENTZELOPOULOU, SE
    [J]. ELECTRONICS LETTERS, 1990, 26 (04) : 258 - 259
  • [3] 2-D lattice discrete filters: Minimal delay and state space realization
    Antoniou, GE
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2001, 8 (01) : 23 - 25
  • [4] STATE-SPACE REALIZATION OF 2-D SYSTEMS VIA CONTINUED-FRACTION EXPANSION
    ANTONIOU, GE
    VAROUFAKIS, SJ
    PARASKEVOPOULOS, PN
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (09): : 926 - 930
  • [5] Generalized one-multiplier lattice discrete 2-D filters: Minimal circuit and state-space realization
    Antoniou, GE
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (02): : 215 - 218
  • [6] TWO-DIMENSIONAL CONTINUED-FRACTION INVERSION
    ANTONIOU, GE
    VAROUFAKIS, SJ
    PARASKEVOPOULOS, PN
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1987, 34 (05): : 580 - 582
  • [7] The Rogers-Ramanujan continued fraction
    Berndt, BC
    Chan, HH
    Huang, SS
    Kang, SY
    Sohn, J
    Son, SH
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 9 - 24
  • [8] MATRIX-METHOD FOR CONTINUED FRACTION INVERSION
    CHEN, CF
    CHANG, WT
    [J]. PROCEEDINGS OF THE IEEE, 1974, 62 (05) : 636 - 637
  • [9] Cormen TH., 2001, Introduction to Algorithms
  • [10] ELAYDI S, 2005, INTRO DIFFERENCE EQU, P398