Stability analysis of fractional-order generalized chaotic susceptible-infected-recovered epidemic model and its synchronization using active control method

被引:22
作者
Ansari, Sana P. [1 ]
Agrawal, Saurabh K. [1 ]
Das, Subir [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2015年 / 84卷 / 01期
关键词
Susceptible-infected-recovered model; fractional time derivative; stability analysis; chaos; synchronization; active control method; SYSTEMS; INFORMATION; ATTRACTORS;
D O I
10.1007/s12043-014-0830-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents the synchronization between a pair of identical susceptible-infected-recovered (SIR) epidemic chaotic systems and fractional-order time derivative using active control method. The fractional derivative is described in Caputo sense. Numerical simulation results show that the method is effective and reliable for synchronizing the fractional-order chaotic systems while it allows the system to remain in chaotic state. The striking features of this paper are: the successful presentation of the stability of the equilibrium state and the revelation that time for synchronization varies with the variation in fractional-order derivatives close to the standard one for different specified values of the parameters of the system.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 25 条
[1]   A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters [J].
Agrawal, S. K. ;
Das, S. .
NONLINEAR DYNAMICS, 2013, 73 (1-2) :907-919
[2]   Synchronization of fractional order chaotic systems using active control method [J].
Agrawal, S. K. ;
Srivastava, M. ;
Das, S. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (06) :737-752
[3]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[4]   Projective synchronization of time-delayed chaotic systems with unknown parameters using adaptive control method [J].
Ansari, Sana Parveen ;
Das, Subir .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (04) :726-737
[5]   Global stability of an SIR epidemic model with information dependent vaccination [J].
Buonomo, Bruno ;
d'Onofrio, Alberto ;
Lacitignola, Deborah .
MATHEMATICAL BIOSCIENCES, 2008, 216 (01) :9-16
[6]   New 3D-scroll attractors in hyperchaotic Chua's circuits forming a ring [J].
Cafagna, D ;
Grassi, G .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10) :2889-2903
[7]   Bifurcation Thresholds in an SIR Model with Information-Dependent Vaccination [J].
d'Onofrio, A. ;
Manfredi, P. ;
Salinelli, E. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2007, 2 (01) :26-43
[8]   Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases [J].
d'Onofrio, Alberto ;
Manfredi, Piero ;
Salinelli, Ernesto .
THEORETICAL POPULATION BIOLOGY, 2007, 71 (03) :301-317
[9]   Chaos synchronization of the fractional Lu system [J].
Deng, WH ;
Li, CP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 353 (1-4) :61-72
[10]   Synchronization of two different systems by using generalized active control [J].
Ho, MC ;
Hung, YC .
PHYSICS LETTERS A, 2002, 301 (5-6) :424-428