Apically Dominant Mechanism for Improving Catalytic Activities of N-Doped Carbon Nanotube Arrays in Rechargeable Zinc-Air Battery

被引:181
作者
Niu, Wenhan [1 ]
Pakhira, Srimanta [2 ,3 ,4 ,5 ]
Marcus, Kyle [6 ]
Li, Zhao [6 ]
Mendoza-Cortes, Jose L. [2 ,3 ,4 ,5 ,7 ]
Yang, Yang [1 ,6 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Florida A&M Univ Florida State Univ Joint Coll En, Dept Chem & Biomed Engn, Tallahassee, FL 32310 USA
[3] FSU, NHMFL, Tallahassee, FL 32310 USA
[4] Florida State Univ, HPMI, Mat Sci & Engn, Tallahassee, FL 32310 USA
[5] Florida State Univ, Dept Sci Comp, 400 Dirac Sci Lib, Tallahassee, FL 32306 USA
[6] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32826 USA
[7] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA
关键词
apically dominant mechanism; electrocatalysts; N-doped carbon nanotubes; PGM-free; zinc-air batteries; OXYGEN REDUCTION REACTION; EVOLUTION REACTIONS; EFFICIENT; ELECTROCATALYSTS; NITROGEN;
D O I
10.1002/aenm.201800480
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in zinc-air batteries (ZABs) require highly efficient, cost-effective, and stable electrocatalysts as alternatives to high cost and low poison resistant platinum group metals (PGM) catalysts. Although nitrogen-doped carbon nanotube (NCNT) arrays are now capable of catalyzing ORR efficiently, their hydrophobic surface and base-growth mode are found to limit the catalytic performance in the practical ZABs. Here, the concept of an apically dominant mechanism in improving the catalytic performance of NCNT by precisely encapsulating CoNi nanoparticles (NPs) within the apical domain of NCNT on the Ni foam (denoted as CoNi@NCNT/NF) is demonstrated. The CoNi@NCNT/NF exhibits a more excellent catalytic performance toward both ORR and OER than that of traditional NCNT derived from the base-growth method. The ZAB coin cell using CoNi@NCNT/NF as an air electrode shows a peak power density of 127 mW cm(-2) with an energy density of 845 Wh kg(Zn)(-1) and rechargeability over 90 h, which outperforms the performance of PGM catalysts. Density functional theory calculations reveal that the ORR catalytic performance of the CoNi@NCNT/NF is mainly attributed to the synergetic contributions from NCNT and the apical active sites on NCNT near to CoNi NPs.
引用
收藏
页数:11
相关论文
共 25 条
[1]   Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures [J].
Andrews, R ;
Jacques, D ;
Qian, D ;
Dickey, EC .
CARBON, 2001, 39 (11) :1681-1687
[2]  
CLINE MG, 1994, PHYSIOL PLANTARUM, V90, P230, DOI 10.1111/j.1399-3054.1994.tb02216.x
[3]   Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction [J].
Deng, Dehui ;
Yu, Liang ;
Chen, Xiaoqi ;
Wang, Guoxiong ;
Jin, Li ;
Pan, Xiulian ;
Deng, Jiao ;
Sun, Gongquan ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) :371-375
[4]   Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction [J].
Deng, Jiao ;
Ren, Pengju ;
Deng, Dehui ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (07) :2100-2104
[5]   Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction [J].
Ding, Wei ;
Wei, Zidong ;
Chen, Siguo ;
Qi, Xueqiang ;
Yang, Tao ;
Hu, Jinsong ;
Wang, Dong ;
Wan, Li-Jun ;
Alvi, Shahnaz Fatima ;
Li, Li .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (45) :11755-11759
[6]   Defect Engineering of Chalcogen-Tailored Oxygen Electrocatalysts for Rechargeable Quasi-Solid-State Zinc-Air Batteries [J].
Fu, Jing ;
Hassan, Fathy M. ;
Zhong, Cheng ;
Lu, Jun ;
Liu, Han ;
Yu, Aiping ;
Chen, Zhongwei .
ADVANCED MATERIALS, 2017, 29 (35)
[7]  
Fu J, 2016, ADV MATER, V28, P6421, DOI [10.1002/adma.201600762, 10.1002/adma.201670208]
[8]   Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system [J].
Gadipelli, Srinivas ;
Zhao, Tingting ;
Shevlin, Stephen A. ;
Guo, Zhengxiao .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) :1661-1667
[9]   Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts [J].
Goerlin, Mikaela ;
Chernev, Petko ;
de Araujo, Jorge Ferreira ;
Reier, Tobias ;
Dresp, Soeren ;
Paul, Benjamin ;
Kraehnert, Ralph ;
Dau, Holger ;
Strasser, Peter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (17) :5603-5614
[10]   Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts [J].
Guo, Donghui ;
Shibuya, Riku ;
Akiba, Chisato ;
Saji, Shunsuke ;
Kondo, Takahiro ;
Nakamura, Junji .
SCIENCE, 2016, 351 (6271) :361-365