共 2 条
Osmotic stress response in Acinetobacter baylyi: identification of a glycine-betaine biosynthesis pathway and regulation of osmoadaptive choline uptake and glycine-betaine synthesis through a choline-responsive BetI repressor
被引:38
|作者:
Scholz, Anica
[1
]
Stahl, Julia
[1
]
de Berardinis, Veronique
[2
]
Mueller, Volker
[1
]
Averhoff, Beate
[1
]
机构:
[1] Goethe Univ Frankfurt, Inst Mol Biosci, Dept Mol Microbiol & Bioenerget, Frankfurt, Germany
[2] Genoscope, Inst Genom CEA, Evry, France
来源:
关键词:
COMPATIBLE SOLUTES;
ESCHERICHIA-COLI;
TETR FAMILY;
PHYSIOLOGY;
SEQUENCE;
D O I:
10.1111/1758-2229.12382
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Acinetobacter baylyi, a ubiquitous soil bacterium, can cope with high salinity by uptake of choline as precursor of the compatible solute glycine betaine. Here, we report on the identification of a choline dehydrogenase (BetA) and a glycine betaine aldehyde dehydrogenase (BetB) mediating the oxidation of choline to glycine betaine. The betAB genes were found to form an operon together with the potential transcriptional regulator betI. The transcription of the betIBA operon and the two recently identified choline transporters was upregulated in response to choline and choline plus salt. The finding that the osmo-independent transporter BetT1 undergoes a higher upregulation in response to choline alone than betT2 suggests that BetT1 does not primarily function in osmoadaptation. Electrophoretic mobility shift assays led to the conclusion that BetI mediates transcriptional regulation of both, the betIBA gene operon and the choline transporters. BetI was released from the DNA in response to choline which together with the transcriptional upregulation of the bet genes in the presence of choline suggests that BetI is a choline sensing transcriptional repressor.
引用
收藏
页码:316 / 322
页数:7
相关论文