Optimisation of a continuous flash fermentation for butanol production using the response surface methodology

被引:22
作者
Mariano, Adriano Pinto [1 ]
Borba Costa, Caliane Bastos [1 ]
de Angelis, Dejanira de Franceschi [3 ]
Maugeri Filho, Francisco [2 ]
Pires Atala, Daniel Ibraim [2 ]
Wolf Maciel, Maria Regina [1 ]
Maciel Filho, Rubens [1 ]
机构
[1] Univ Estadual Campinas, Lab Optimizat Design & Adv Control, LOPCA Sch Chem Engn, UNICAMP, BR-13083970 Campinas, SP, Brazil
[2] Univ Estadual Campinas, Lab Bioproc Engn, Sch Food Engn, UNICAMP, BR-13083970 Campinas, SP, Brazil
[3] Sao Paulo State Univ, Dept Biochem & Microbiol, Inst Biosci, UNESP, BR-13506900 Rio Claro, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Flash fermentation; Biobutanol; Mathematical modelling; Optimisation; Response surfaces; SIMULATION; RECOVERY; CULTURE; ETHANOL; DESIGN;
D O I
10.1016/j.cherd.2009.11.002
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Factorial design and response surface techniques were used in combination with mathematical modelling and computational simulation to optimise an innovative industrial bioprocess, the production of biobutanol employing the flash fermentation technology. A parametric analysis performed by means of a full factorial design at two levels determined the influence of operating variables on butanol yield and productivity. A second set of simulations were carried out based on the central composite rotatable design. This procedure generated simplified statistical models that describe butanol yield and productivity as functions of the significant operating variables. From these models, response surfaces were obtained and used to optimise the process. For a range of substrate concentration from 130 to 180 g/l, the optimum operating ranges ensure butanol productivity between 7.0 and 8.0 g/l h, butanol yield between 19 and 22%, substrate conversion above 90% and final butanol concentration around 25 g/l. (C) 2009 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:562 / 571
页数:10
相关论文
共 22 条
[11]   TECHNOLOGIES FOR BUTANOL RECOVERY INTEGRATED WITH FERMENTATIONS [J].
GROOT, WJ ;
VANDERLANS, RGJM ;
LUYBEN, KCAM .
PROCESS BIOCHEMISTRY, 1992, 27 (02) :61-75
[12]   Extractive acetone-butanol-ethanol fermentation using methylated crude palm oil as extractant in batch culture of Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) [J].
Ishizaki, A ;
Michiwaki, S ;
Crabbe, E ;
Kobayashi, G ;
Sonomoto, K ;
Yoshino, S .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 1999, 87 (03) :352-356
[13]   ACETONE-BUTANOL FERMENTATION REVISITED [J].
JONES, DT ;
WOODS, DR .
MICROBIOLOGICAL REVIEWS, 1986, 50 (04) :484-524
[14]   Response surface analysis and simulation as a tool for bioprocess design and optimization [J].
Kalil, SJ ;
Maugeri, F ;
Rodrigues, MI .
PROCESS BIOCHEMISTRY, 2000, 35 (06) :539-550
[15]   An Alternative Process for Butanol Production: Continuous Flash Fermentation [J].
Mariano, Adriano Pinto ;
de Angelis, Dejanira de Franceschi ;
Filho, Francisco Maugeri ;
Atala, Daniel Ibraim Pires ;
Maciel, Maria Regina Wolf ;
Filho, Rubens Maciel .
CHEMICAL PRODUCT AND PROCESS MODELING, 2008, 3 (01)
[16]   MODELING OF THE ACETONE-BUTANOL FERMENTATION WITH CELL RETENTION [J].
MULCHANDANI, A ;
VOLESKY, B .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1986, 64 (04) :625-631
[17]  
Neto BB, 2001, PLANEJAMENTO OTIMIZA
[18]  
Phillips J A, 1983, WOOD AGR RESIDUES RE
[19]   INSITU RECOVERY OF FERMENTATION PRODUCTS [J].
ROFFLER, SR ;
BLANCH, HW ;
WILKE, CR .
TRENDS IN BIOTECHNOLOGY, 1984, 2 (05) :129-136
[20]  
Sandler S.I, 1999, CHEM ENG THERMODYNAM