Named entity recognition in electronic health records using transfer learning bootstrapped Neural Networks

被引:58
|
作者
Gligic, Luka [1 ]
Kormilitzin, Andrey [1 ]
Goldberg, Paul [1 ]
Nevado-Holgado, Alejo [1 ]
机构
[1] Univ Oxford, Oxford, England
基金
英国医学研究理事会;
关键词
Neural Networks; NLP; Named entity recognition; Electronic health records; Transfer learning; LSTM; PATIENT SMOKING STATUS; MEDICATION INFORMATION;
D O I
10.1016/j.neunet.2019.08.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural networks (NNs) have become the state of the art in many machine learning applications, such as image, sound (LeCun et al., 2015) and natural language processing (Young et al., 2017; Linggard et al., 2012). However, the success of NNs remains dependent on the availability of large labelled datasets, such as in the case of electronic health records (EHRs). With scarce data, NNs are unlikely to be able to extract this hidden information with practical accuracy. In this study, we develop an approach that solves these problems for named entity recognition, obtaining 94.6 F1 score in I2B2 2009 Medical Extraction Challenge (Uzuner et al., 2010), 4.3 above the architecture that won the competition. To achieve this, we bootstrap our NN models through transfer learning by pretraining word embeddings on a secondary task performed on a large pool of unannotated EHRs and using the output embeddings as a foundation of a range of NN architectures. Beyond the official I2B2 challenge, we further achieve 82.4 F1 on extracting relationships between medical terms using attention-based seq2seq models bootstrapped in the same manner. Crown Copyright (C) 2019 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:132 / 139
页数:8
相关论文
共 50 条
  • [41] Combined Attention Mechanism for Named Entity Recognition in Chinese Electronic Medical Records
    Li, Luqi
    Hou, Li
    2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2019, : 476 - 477
  • [42] A weakly supervised method for named entity recognition of Chinese electronic medical records
    Meng Li
    Chunrong Gao
    Kuang Zhang
    Huajian Zhou
    Jing Ying
    Medical & Biological Engineering & Computing, 2023, 61 : 2733 - 2743
  • [43] Hierarchical shared transfer learning for biomedical named entity recognition
    Zhaoying Chai
    Han Jin
    Shenghui Shi
    Siyan Zhan
    Lin Zhuo
    Yu Yang
    BMC Bioinformatics, 23
  • [44] Hierarchical shared transfer learning for biomedical named entity recognition
    Chai, Zhaoying
    Jin, Han
    Shi, Shenghui
    Zhan, Siyan
    Zhuo, Lin
    Yang, Yu
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [45] A weakly supervised method for named entity recognition of Chinese electronic medical records
    Li, Meng
    Gao, Chunrong
    Zhang, Kuang
    Zhou, Huajian
    Ying, Jing
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (10) : 2733 - 2743
  • [46] Weakly Supervised Named Entity Recognition for Carbon Storage Using Deep Neural Networks
    Londono, Rene Gomez
    Wlodarczyk, Sylvain
    Arman, Molood
    Bugiotti, Francesca
    Seghouani, Nacera Bennacer
    DISCOVERY SCIENCE (DS 2022), 2022, 13601 : 227 - 242
  • [47] Named Entity Recognition for Amharic Using Deep Learning
    Gamback, Bjorn
    Sikdar, Utpal Kumar
    2017 IST-AFRICA WEEK CONFERENCE (IST-AFRICA), 2017,
  • [48] Turkish Named Entity Recognition with Deep Learning
    Gunes, Asim
    Tantug, A. Cuneyd
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [49] An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records
    Luqi Li
    Jie Zhao
    Li Hou
    Yunkai Zhai
    Jinming Shi
    Fangfang Cui
    BMC Medical Informatics and Decision Making, 19
  • [50] An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records
    Li, Luqi
    Zhao, Jie
    Hou, Li
    Zhai, Yunkai
    Shi, Jinming
    Cui, Fangfang
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)