Argininosuccinate synthetase and argininosuccinate lyase:: two ornithine cycle enzymes from Agaricus bisporus

被引:21
作者
Wagemaker, Matthijs J. M.
Eastwood, Daniel C. [1 ]
Van der Drift, Chris
Jetten, Mike S. M.
Burton, Kerry
Van Griensven, Leo J. L. D.
Op Den Camp, Huub J. M.
机构
[1] Univ Warwick, Warwick HRI, Wellesbourne CV35 9EF, Warwick, England
[2] Plant Res Int BV, Wageningen UR, NL-6700 AA Wageningen, Netherlands
来源
MYCOLOGICAL RESEARCH | 2007年 / 111卷
关键词
ASL; ASS; basidiomycete; fungus; mushroom; nitrogen metabolism; post-harvest; urea; ureolytic;
D O I
10.1016/j.mycres.2007.01.016
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Accumulation of high quantities of urea in fruiting bodies is a known feature of larger basidiomycetes. Argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) are two ornithine cycle enzymes catalysing the last two steps in the arginine biosynthetic pathway. Arginine is the main precursor for urea formation. in this work the nucleotide sequences of the genes and corresponding cDNAs encoding argininosuccinate synthetase (ass) and argininosuccinate lyase (asl) from Agaricus bisporus were determined. Eight and six introns were present in the ass and asl gene, respectively. The location of four introns in the asl gene were conserved among vertebrate asl genes. Deduced amino acid sequences, representing the first homobasidiomycete ASS and ASL protein sequences, were analysed and compared with their counterparts in other organisms. The ass ORF encoded for a protein of 425 amino acids with a calculated molecular mass of 47 266 Da. An alignment with ASS proteins from other organisms revealed high similarity with fungal and mammalian ASS proteins, 61-63% and 51-55 % identity, respectively. The asl open reading frame (ORF) encoded a protein of 464 amino acids with an calculated mass of 52 337 Da and similar to ASS shared the highest similarity with fungal ASL proteins, 59-60% identity. Northern analyses of ass and asl during fruiting body formation and post-harvest development revealed that expression was significantly up-regulated from developmental stage 3 on for all the tissues studied. The expression reached a maximum at the later stages of fruiting body growth, stages 6 and 7. Both ass and asl genes were up-regulated within 3 h after harvest showing that the induction mechanism is very sensitive to the harvest event and emphasizes the importance of the arginine biosynthetic pathway/ornithine cycle in post-harvest physiology. (C) 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:493 / 502
页数:10
相关论文
共 61 条
[1]   Structural comparison of the enzymatically active and inactive forms of delta crystallin and the role of histidine 91 [J].
AbuAbed, M ;
Turner, MA ;
Vallee, F ;
Simpson, A ;
Slingsby, C ;
Howell, PL .
BIOCHEMISTRY, 1997, 36 (46) :14012-14022
[2]  
ALLAN JD, 1958, LANCET, V1, P182
[3]  
[Anonymous], 1989, Molecular Cloning
[4]   The argininosuccinate lyase gene of Chlamydomonas reinhardtii:: cloning of the cDNA and its characterization as a selectable shuttle marker [J].
Auchincloss, AH ;
Loroch, AI ;
Rochaix, JD .
MOLECULAR AND GENERAL GENETICS, 1999, 261 (01) :21-30
[5]  
BARBOSA P, 1991, J BIOL CHEM, V266, P22319
[6]   THE EFFECTS OF STORAGE AND DEVELOPMENT ON AGARICUS-BISPORUS PROTEASES [J].
BURTON, KS .
JOURNAL OF HORTICULTURAL SCIENCE, 1988, 63 (01) :103-108
[7]   Accumulation of serine proteinase in senescent sporophores of the cultivated mushroom, Agaricus bisporus [J].
Burton, KS ;
Partis, MD ;
Wood, DA ;
Thurston, CF .
MYCOLOGICAL RESEARCH, 1997, 101 :146-152
[8]  
BURTON KS, 1994, CURRENT MICROBIOLOGY, V28, P1
[9]   Mutational analysis of amino acid residues involved in argininosuccinate lyase activity in duck δ II crystallin [J].
Chakraborty, AR ;
Davidson, A ;
Howell, PL .
BIOCHEMISTRY, 1999, 38 (08) :2435-2443
[10]   BIOCHEMICAL-CHARACTERIZATION OF CRYSTALLINS FROM PIGEON LENSES - STRUCTURAL AND SEQUENCE-ANALYSIS OF PIGEON DELTA-CRYSTALLIN [J].
CHIOU, SH ;
HUNG, CC ;
LIN, CW .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1160 (03) :317-324