Landslide and Wildfire Susceptibility Assessment in Southeast Asia Using Ensemble Machine Learning Methods

被引:53
作者
He, Qian [1 ,2 ]
Jiang, Ziyu [1 ,2 ]
Wang, Ming [1 ,2 ]
Liu, Kai [1 ,2 ]
机构
[1] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Acad Disaster Reduct & Emergency Management, Fac Geog Sci, Beijing 100875, Peoples R China
关键词
Southeast Asia; landslide; wildfire; susceptibility; ensemble machine learning; COMPUTATIONAL INTELLIGENCE MODELS; FLOOD SUSCEPTIBILITY; LOGISTIC-REGRESSION; NEURAL-NETWORK; DECISION TREE; FOREST; PREDICTION; INDONESIA; REGION; CLASSIFICATION;
D O I
10.3390/rs13081572
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Southeast Asia (SEA) is a region affected by landslide and wildfire; however, few studies on susceptibility modeling for the two hazards together have been conducted for this region, and the intersection and the uncertainty of the two hazards are rarely assessed. Thus, the intersection of landslide and wildfire susceptibility and the spatial uncertainty of the susceptibility maps were studied in this paper. Reliable landslide and wildfire susceptibility maps are necessary for disaster management and land use planning. This work used three advanced ensemble machine learning algorithms: RF (Random Forest), GBDT (Gradient Boosting Decision Tree) and AdaBoost (Adaptive Boosting) to assess the landslide and wildfire susceptibility for SEA. A geo-database was established with 2759 landslide locations, 1633 wildfire locations and 18 predictor variables in total. The performances of the models were assessed using the overall classification accuracy (ACC), Precision, the area under the ROC (receiver operating curve) (AUC) and confusion matrix values. The results showed RF performs superior in both landslide (ACC = 0.81, Precision = 0.78 and AUC= 0.89) and wildfire (ACC= 0.83, Precision = 0.83 and AUC = 0.91) susceptibility modeling, followed by GBDT and AdaBoost. The overall superiority of RF over other models indicates that it is potentially an efficient model for landslide and wildfire susceptibility mapping. The landslide and wildfire susceptibility were obtained using the RF model. This paper also conducted an overlay analysis of the two hazards. The uncertainty of the susceptibility was further assessed using the coefficient of variation (CV). Additionally, the distance to roads is relatively important in both landslide and wildfire susceptibility, which is the most important in landslides and the second most important in wildfires. The result of this paper is useful for mastering the whole situation of hazard susceptibility and proves that RF is a robust model in the hazard susceptibility assessment in SEA.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Machine learning with a susceptibility index-based sampling strategy for landslide susceptibility assessment
    Liu, Lei-Lei
    Zhang, Yi-Li
    Zhang, Shao-He
    Shu, Biao
    Xiao, Ting
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 15683 - 15713
  • [22] Application of Artificial Intelligence and machine learning techniques for landslide susceptibility assessment
    Ospina-Gutierrez, Juan Pablo
    Aristizabal, Edier
    REVISTA MEXICANA DE CIENCIAS GEOLOGICAS, 2021, 38 (01): : 43 - 54
  • [23] Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey
    Ado, Moziihrii
    Amitab, Khwairakpam
    Maji, Arnab Kumar
    Jasinska, Elzbieta
    Gono, Radomir
    Leonowicz, Zbigniew
    Jasinski, Michal
    REMOTE SENSING, 2022, 14 (13)
  • [24] Stacking ensemble of machine learning methods for landslide susceptibility mapping in Zhangjiajie City, Hunan Province, China
    Huan, Yuke
    Song, Lei
    Khan, Umair
    Zhang, Baoyi
    ENVIRONMENTAL EARTH SCIENCES, 2023, 82 (01)
  • [25] Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya
    Chowdhuri, Indrajit
    Pal, Subodh Chandra
    Chakrabortty, Rabin
    Malik, Sadhan
    Das, Biswajit
    Roy, Paramita
    NATURAL HAZARDS, 2021, 107 (01) : 697 - 722
  • [26] Advanced landslide susceptibility mapping and analysis of driving mechanisms using ensemble machine learning models
    Maashi, Mashael
    Alzaben, Nada
    Negm, Noha
    Venkatesan, V.
    Begum, S. Sabarunisha
    Geetha, P.
    JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2025, 151
  • [27] Assessment of Landslide Susceptibility of the Wisnickie Foothills Mts. (The Flysch Carpathians, Poland) Using Selected Machine Learning Algorithms
    Zydron, Tymoteusz
    Demczuk, Piotr
    Gruchot, Andrzej
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [28] A comprehensive review of machine learning-based methods in landslide susceptibility mapping
    Liu, Songlin
    Wang, Luqi
    Zhang, Wengang
    He, Yuwei
    Pijush, Samui
    GEOLOGICAL JOURNAL, 2023, 58 (06) : 2283 - 2301
  • [29] Landslide Susceptibility Assessment Based on Different MaChine Learning Methods in Zhaoping County of Eastern Guangxi
    Kong, Chunfang
    Tian, Yiping
    Ma, Xiaogang
    Weng, Zhengping
    Zhang, Zhiting
    Xu, Kai
    REMOTE SENSING, 2021, 13 (18)
  • [30] Landslide Susceptibility Assessment Using an AutoML Framework
    Bruzon, Adrian G.
    Arrogante-Funes, Patricia
    Arrogante-Funes, Fatima
    Martin-Gonzalez, Fidel
    Novillo, Carlos J.
    Fernandez, Ruben R.
    Vazquez-Jimenez, Rene
    Alarcon-Paredes, Antonio
    Alonso-Silverio, Gustavo A.
    Cantu-Ramirez, Claudia A.
    Ramos-Bernal, Rocio N.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (20)