Very accurate estimates of the polygamma functions

被引:58
作者
Mortici, Cristinel [1 ]
机构
[1] Valahia Univ Targoviste, Dept Math, Targoviste 130082, Romania
关键词
gamma function; polygamma functions; completely monotonicity; Bernoulli numbers; GAMMA-FUNCTION; MONOTONIC FUNCTIONS; INEQUALITIES; DIGAMMA;
D O I
10.3233/ASY-2010-0983
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to give some refinements of an estimation for the polygamma functions, stated in J. Math. Anal. Approx. Theory 1(2) (2006), 124-134. Finally, a general method to establish increasingly accurate estimations is given.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 44 条
[1]   Inequalities for the polygamma functions [J].
Alzer, H ;
Wells, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) :1459-1466
[2]   A subadditive property of the gamma function [J].
Alzer, H ;
Ruscheweyh, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (02) :564-577
[3]   A superadditive property of Hadamard's gamma function [J].
Alzer, Horst .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2009, 79 (01) :11-23
[4]  
Alzer H, 2008, MEDITERR J MATH, V5, P395, DOI 10.1007/s00009-008-0158-x
[5]   A Turan-type inequality for the gamma function [J].
Alzer, Horst ;
Felder, Giovanni .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) :276-282
[6]  
Andrews LC., 1985, Special Functions for Engineers and Applied Mathematicians
[7]  
[Anonymous], 2006, J MATH ANAL APPROX T
[8]  
[Anonymous], 1939, Compositio Math.
[9]  
[Anonymous], 1972, HDB MATH FUNCTIONS F
[10]  
[Anonymous], J INEQUAL PURE APPL