Ultra-small angle neutron scattering and X-ray tomography studies of caseinate-hydroxyapatite microporous materials

被引:4
作者
Ritzoulis, C. [1 ]
Strobl, M. [2 ,3 ]
Panayiotou, C. [4 ]
Choinka, G. [3 ]
Tsioptsias, C. [4 ]
Vasiliadou, C. [5 ]
Vasilakos, V. [6 ]
Beckmann, F. [7 ]
Herzen, J. [7 ]
Donath, T. [7 ]
机构
[1] ATEI Thessaloniki, Thessaloniki 57400, Greece
[2] Univ Heidelberg, Inst Phys Chem, D-69120 Heidelberg, Germany
[3] Helmholtz Ctr Berlin Mat & Energy, D-14109 Berlin, Germany
[4] Aristotle Univ Thessaloniki, Thessaloniki, Greece
[5] KEPAMAH, Polygyros 63100, Chalkidiki, Greece
[6] Univ Crete, Dept Biol, Iraklion 71409, Crete, Greece
[7] GKSS Forschungszentrum Geesthacht GmbH, Inst Mat Res, D-21502 Geesthacht, Germany
关键词
Microporous materials; Neutron scattering and diffraction; X-ray tomography; Microstructure; COMPOSITE; BIOMATERIALS; PHOSPHATE; RHBMP-2; ALBUMIN;
D O I
10.1016/j.matchemphys.2010.03.064
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Microporous hydroxyapatite-protein composite materials of bimodal pore size distribution, intended for utilization as bone regeneration scaffolds, have been prepared by means of milk caseinate emulsion droplet templating. Ultra-small angle neutron scattering (USANS) has been utilized in order to obtain information on the size distribution of the smaller pores (less than tens of micrometers), as compared to the emulsions that have been initially used as templates. The samples were subsequently visualized in 3 dimensions using synchrotron radiation X-ray tomography, where information concerning the larger pores has been obtained. The examination of the samples confirmed a strong correlation between the size of the templating droplets and the produced pores. In addition, 1 mu m-sized pores appear to adhere to the surface of 20-70 mu m pores, providing an irregular surface on the large pore walls, a desirable feature in bone-mimicking materials. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 82
页数:6
相关论文
共 26 条
[1]  
Alberts B., 2017, Molecular Biology of the Cell
[2]   Preparation of hydroxyapatite-gelatin nanocomposite [J].
Chang, MC ;
Ko, CC ;
Douglas, WH .
BIOMATERIALS, 2003, 24 (17) :2853-2862
[3]   Preparation and in vitro bioactivity of poly(D,L-lactide) composite containing hydroxyapatite nanocrystals [J].
Deng, C. ;
Weng, J. ;
Lu, X. ;
Zhou, S. B. ;
Wan, J. X. ;
Qu, S. X. ;
Feng, B. ;
Li, X. H. .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2008, 28 (08) :1304-1310
[4]  
Dickinson E., 1992, INTRO FOOD COLLOIDS
[5]  
Hsu FY, 1999, BIOMATERIALS, V20, P1931
[6]   A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy [J].
Ignjatovic, N ;
Savic, V ;
Najman, S ;
Plavsic, M ;
Uskokovic, D .
BIOMATERIALS, 2001, 22 (06) :571-575
[7]   Effects of bovine amelogenins on the crystal morphology of octacalcium phosphate in a model system of tooth enamel formation [J].
Iijima, M ;
Moriwaki, Y ;
Takagi, T ;
Moradian-Oldak, J .
JOURNAL OF CRYSTAL GROWTH, 2001, 222 (03) :615-626
[8]  
Itoh S, 2001, J BIOMED MATER RES, V54, P445, DOI 10.1002/1097-4636(20010305)54:3<445::AID-JBM190>3.3.CO
[9]  
2-0
[10]   Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite [J].
Itoh, S ;
Kikuchi, M ;
Koyama, Y ;
Takakuda, K ;
Shinomiya, K ;
Tanaka, J .
BIOMATERIALS, 2002, 23 (19) :3919-3926