Non-Equilibrium Steady States in Conformal Field Theory

被引:89
作者
Bernard, Denis [1 ]
Doyon, Benjamin [2 ]
机构
[1] Ecole Normale Super, CNRS, Phys Theor Lab, UMR 8549, F-75005 Paris, France
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
来源
ANNALES HENRI POINCARE | 2015年 / 16卷 / 01期
关键词
COUNTING STATISTICS; INVARIANCE;
D O I
10.1007/s00023-014-0314-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a construction of non-equilibrium steady states in one-dimensional quantum critical systems carrying energy and charge fluxes. This construction is based on a scattering approach within a real-time hamiltonian reservoir formulation. Using conformal field theory techniques, we prove convergence towards steady states at large time. We discuss in which circumstances these states describe the universal non-equilibrium regime at low temperatures. We compute the exact large deviation functions for both energy and charge transfers, which encode for the quantum and statistical fluctuations of these transfers at large time. They are universal, depending only on fundamental constants (), on the central charge and on the external parameters such as the temperatures or the chemical potentials, and they satisfy fluctuation relations. A key point consists in relating the derivatives of these functions to the linear response functions but at complex shifted external parameters.
引用
收藏
页码:113 / 161
页数:49
相关论文
共 43 条
[1]  
[Anonymous], WINDOW ZETA MODULAR
[2]   Non-equilibrium steady states of the XY chain [J].
Aschbacher, WH ;
Pillet, CA .
JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (5-6) :1153-1175
[3]   Fredholm determinants and the statistics of charge transport [J].
Avron, J. E. ;
Bachmann, S. ;
Graf, G. M. ;
Klich, I. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 280 (03) :807-829
[4]   Time-reversal symmetry and fluctuation relations in non-equilibrium quantum steady states [J].
Bernard, Denis ;
Doyon, Benjamin .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (37)
[5]   Full counting statistics in the resonant-level model [J].
Bernard, Denis ;
Doyon, Benjamin .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
[6]   Energy flow in non-equilibrium conformal field theory [J].
Bernard, Denis ;
Doyon, Benjamin .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (36)
[7]  
Bonetto F., 2000, Mathematical Physics, P128, DOI [10.1142/9781848160224_0008., DOI 10.1142/9781848160224_0008]
[8]   Time dependence of correlation functions following a quantum quench [J].
Calabrese, P ;
Cardy, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (13)
[9]   Quantum quenches in extended systems [J].
Calabrese, Pasquale ;
Cardy, John .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[10]   Quantum Quench in the Transverse-Field Ising Chain [J].
Calabrese, Pasquale ;
Essler, Fabian H. L. ;
Fagotti, Maurizio .
PHYSICAL REVIEW LETTERS, 2011, 106 (22)