Li2S doping into CZTSe drives the large improvement of VOC of solar cell

被引:23
作者
Shen, Zhan [1 ,2 ,3 ]
Wang, Siyu [1 ,2 ,3 ]
Liu, Yue [1 ,2 ,3 ]
Sun, Yali [1 ,2 ,3 ]
Wu, Jianyu [1 ,2 ,3 ]
Guo, Hongling [1 ,2 ,3 ]
Zhang, Kaizhi [1 ,2 ,3 ]
Zhang, Shengli [1 ,2 ,3 ]
Liu, Fangfang [1 ,2 ,3 ]
Zhang, Yi [1 ,2 ,3 ]
机构
[1] Nankai Univ, Inst Photoelect Thin Film Devices & Technol, Tianjin 300350, Peoples R China
[2] Nankai Univ, Tianjin Key Lab Photoelect Thin Film Devices & Te, Tianjin 300350, Peoples R China
[3] Nankai Univ, Renewable Energy Convers & Storage Ctr, Tianjin 300350, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2021年 / 62卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Li2S treatment; Surface passivation; V-OC enhancement; Band alignment; FILM; SE; GROWTH; SODIUM; IMPACT;
D O I
10.1016/j.jechem.2021.04.018
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Alkali metal doping or sulfurization are commonly applied in Cu2ZnSnSe4 (CZTSe) solar cell to improve the open-circuit voltage (V-OC). However, alkali metal sulfide affording both alkali metal and sulfur is seldom to be studied, which restrains the development of kesterite solar cells. In this study, we evaporate Li2S during selenization process and hope to provide both alkali metal and sulfur to CZTSe film. The result indicates that Li shows a gradient distribution near the surface of CZTSe film and the content of S is slight. The film quality is improved and the recombination at grain boundaries is decreased after Li2S treatment. Besides, the bandgap of the absorber gets wider. Under the synergy of sulfur and lithium (mainly from lithium), the work function of the treated absorber gets higher and the conduction band offset (CBO) is in the ideal range. Combined with these contributions, the V-OC of the champion device treated by Li2S dramatically increase by 120 mV. This study discloses that alkali metal brings the main effect on the performance of the kesterite solar cell even an alkali metal sulfide is evaporated, which deepens the understanding of sulfurization of CZTSe and also promote the progress of kesterite solar cells. (C) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:637 / 644
页数:8
相关论文
共 39 条
[1]   Source and effects of sodium in solution-processed kesterite solar cells [J].
Abzieher, Tobias ;
Schnabel, Thomas ;
Hetterich, Michael ;
Powalla, Michael ;
Ahlswede, Erik .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (04) :1039-1049
[2]   High-Efficiency (LixCu1-x)2ZnSn(S,Se)4 Kesterite Solar Cells with Lithium Alloying [J].
Cabas-Vidani, Antonio ;
Haass, Stefan G. ;
Andres, Christian ;
Caballero, Raquel ;
Figi, Renato ;
Schreiner, Claudia ;
Marquez, Jose A. ;
Hages, Charles ;
Unold, Thomas ;
Bleiner, Davide ;
Tiwari, Ayodhya N. ;
Romanyuk, Yaroslav E. .
ADVANCED ENERGY MATERIALS, 2018, 8 (34)
[3]   Raman scattering analysis of the surface chemistry of kesterites: Impact of post-deposition annealing and Cu/Zn reordering on solar cell performance [J].
Dimitrievska, Mirjana ;
Giraldo, Sergio ;
Pistor, Paul ;
Saucedo, Edgardo ;
Perez-Rodriguez, Alejandro ;
Izquierdo-Roca, Victor .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 :462-467
[4]   Tailoring Mo(S,Se)2 structure for high efficient Cu2ZnSn(S,Se)4 solar cells [J].
Gao, Shoushuai ;
Zhang, Yi ;
Ao, Jianping ;
Lin, Shuping ;
Zhang, Zhaojing ;
Li, Xiuling ;
Wang, Donggiao ;
Zhou, Zhiqiang ;
Sun, Guozhong ;
Liu, Fangfang ;
Sun, Yun .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 176 :302-309
[5]   Photovoltaic Materials and Devices Based on the Alloyed Kesterite Absorber (AgxCu1-x)2ZnSnSe4 [J].
Gershon, Talia ;
Lee, Yun Seog ;
Antunez, Priscilla ;
Mankad, Ravin ;
Singh, Saurabh ;
Bishop, Doug ;
Gunawan, Oki ;
Hopstaken, Marinus ;
Haight, Richard .
ADVANCED ENERGY MATERIALS, 2016, 6 (10)
[6]   The Role of Sodium as a Surfactant and Suppressor of Non-Radiative Recombination at Internal Surfaces in Cu2ZnSnS4 [J].
Gershon, Talia ;
Shin, Byungha ;
Bojarczuk, Nestor ;
Hopstaken, Marinus ;
Mitzi, David B. ;
Guha, Supratik .
ADVANCED ENERGY MATERIALS, 2015, 5 (02)
[7]   An efficient Li+-doping strategy to optimize the band alignment of a Cu2ZnSn(S,Se)4/CdS interface by a Se&LiF co-selenization process [J].
Guo, Hongling ;
Wang, Gang ;
Meng, Rutao ;
Sun, Yali ;
Wang, Siyu ;
Zhang, Shengli ;
Wu, Jianyu ;
Wu, Li ;
Liang, Guangxing ;
Li, Hui ;
Zhang, Yi .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (42) :22065-22074
[8]   Synergistic Effects of Double Cation Substitution in Solution-Processed CZTS Solar Cells with over 10% Efficiency [J].
Hadke, Shreyash H. ;
Levcenko, Sergiu ;
Lie, Stener ;
Hages, Charles J. ;
Marquez, Jose A. ;
Unold, Thomas ;
Wong, Lydia H. .
ADVANCED ENERGY MATERIALS, 2018, 8 (32)
[9]   Generalized quantum efficiency analysis for non-ideal solar cells: Case of Cu2ZnSnSe4 [J].
Hages, Charles J. ;
Carter, Nathaniel J. ;
Agrawal, Rakesh .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (01)
[10]   Band alignment at the Cu2ZnSn(SxSe1-x)4/CdS interface [J].
Haight, Richard ;
Barkhouse, Aaron ;
Gunawan, Oki ;
Shin, Byungha ;
Copel, Matt ;
Hopstaken, Marinus ;
Mitzi, David B. .
APPLIED PHYSICS LETTERS, 2011, 98 (25)