Recent progress in Ga2O3 power devices

被引:945
作者
Higashiwaki, Masataka [1 ]
Sasaki, Kohei [1 ,2 ]
Murakami, Hisashi [3 ]
Kumagai, Yoshinao [3 ]
Koukitu, Akinori [3 ]
Kuramata, Akito [2 ]
Masui, Takekazu [2 ]
Yamakoshi, Shigenobu [2 ]
机构
[1] Natl Inst Informat & Commun Technol, 4-2-1 Nukuikitamachi, Koganei, Tokyo 1848795, Japan
[2] Tamura Corp, Sayama, Saitama 3501328, Japan
[3] Tokyo Univ Agr & Technol, Koganei, Tokyo 1848588, Japan
关键词
gallium oxide; Ga2O3; power devices; edge-defined film-fed growth; halide vapor phase epitaxy; molecular beam epitaxy; BETA-GA2O3; SINGLE-CRYSTALS; MOLECULAR-BEAM EPITAXY; GROWTH; FILMS; ABSORPTION; EDGE; GAN;
D O I
10.1088/0268-1242/31/3/034001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This is a review article on the current status and future prospects of the research and development on gallium oxide (Ga2O3) power devices. Ga2O3 possesses excellent material properties, in particular for power device applications. It is also attractive from an industrial viewpoint since large-size, high-quality wafers can be manufactured from a single-crystal bulk synthesized by melt-growth methods. These two features have drawn much attention to Ga2O3 as a new wide bandgap semiconductor following SiC and GaN. In this review, we describe the recent progress in the research and development on fundamental technologies of Ga2O3 devices, covering single-crystal bulk and wafer production, homoepitaxial thin film growth by molecular beam epitaxy and halide vapor phase epitaxy, as well as device processing and characterization of metal-semiconductor field-effect transistors, metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes.
引用
收藏
页数:11
相关论文
共 44 条
[1]   Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method [J].
Aida, Hideo ;
Nishiguchi, Kengo ;
Takeda, Hidetoshi ;
Aota, Natsuko ;
Sunakawa, Kazuhiko ;
Yaguchi, Yoichi .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (11) :8506-8509
[2]   Effect of indium as a surfactant in (Ga1-xInx)2O3 epitaxial growth on β-Ga2O3 by metal organic vapour phase epitaxy [J].
Baldini, M. ;
Albrecht, M. ;
Gogova, D. ;
Schewski, R. ;
Wagner, G. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (02)
[3]   Bulk ammonothermal GaN [J].
Dwilinski, R. ;
Doradzinski, R. ;
Garczynski, J. ;
Sierzputowski, L. P. ;
Puchalski, A. ;
Kanbara, Y. ;
Yagi, K. ;
Minakuchi, H. ;
Hayashi, H. .
JOURNAL OF CRYSTAL GROWTH, 2009, 311 (10) :3015-3018
[4]   Bulk GaN crystals grown by HVPE [J].
Fujito, Kenji ;
Kubo, Shuichi ;
Nagaoka, Hirobumi ;
Mochizuki, Tae ;
Namita, Hideo ;
Nagao, Satoru .
JOURNAL OF CRYSTAL GROWTH, 2009, 311 (10) :3011-3014
[5]   On the bulk β-Ga2O3 single crystals grown by the Czochralski method [J].
Galazka, Zbigniew ;
Irmscher, Klaus ;
Uecker, Reinhard ;
Bertram, Rainer ;
Pietsch, Mike ;
Kwasniewski, Albert ;
Naumann, Martin ;
Schulz, Tobias ;
Schewski, Robert ;
Klimm, Detlef ;
Bickermann, Matthias .
JOURNAL OF CRYSTAL GROWTH, 2014, 404 :184-191
[6]   Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE [J].
Gogova, D. ;
Wagner, G. ;
Baldini, M. ;
Schmidbauer, M. ;
Irmscher, K. ;
Schewski, R. ;
Galazka, Z. ;
Albrecht, M. ;
Fornari, R. .
JOURNAL OF CRYSTAL GROWTH, 2014, 401 :665-669
[7]   Anisotropic thermal conductivity in single crystal β-gallium oxide [J].
Guo, Zhi ;
Verma, Amit ;
Wu, Xufei ;
Sun, Fangyuan ;
Hickman, Austin ;
Masui, Takekazu ;
Kuramata, Akito ;
Higashiwaki, Masataka ;
Jena, Debdeep ;
Luo, Tengfei .
APPLIED PHYSICS LETTERS, 2015, 106 (11)
[8]   Room temperature ferromagnetism in Mn-doped γ-Ga2O3 with spinel structure [J].
Hayashi, Hiroyuki ;
Huang, Rong ;
Ikeno, Hidekazu ;
Oba, Fumiyasu ;
Yoshioka, Satoru ;
Tanaka, Isao ;
Sonoda, Saki .
APPLIED PHYSICS LETTERS, 2006, 89 (18)
[9]   First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases [J].
He, Haiying ;
Orlando, Roberto ;
Blanco, Miguel A. ;
Pandey, Ravindra ;
Amzallag, Emilie ;
Baraille, Isabelle ;
Rerat, Michel .
PHYSICAL REVIEW B, 2006, 74 (19)
[10]  
Higashiwaki M, 2013, IEEE DEVICE RES CONF