On the Sharp Triangle Inequalities in Quasi-Banach Spaces

被引:0
作者
Xiao, Xiangzhen [1 ]
机构
[1] Henan Inst Sci & Technol, Expt Ctr, Xinxiang, Henan, Peoples R China
来源
PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, CONTROL AND ELECTRONIC ENGINEERING | 2014年 / 113卷
关键词
Triangle inequality; Sharp triangle inequality; Reverse inequality; Norm; Quasi-Banach spaces;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The triangle inequality is one of the most important and fundamental inequalities in analysis. Many authors have been treating its generalizations and reverse inequalities. In this paper, we shall present the sharp triangle inequality and its reverse inequality for an arbitrary number of finitely many nonzero elements of a quasi-Banach space, which generalize the results obtained by C. Wu and Y. J. Li in [1].
引用
收藏
页码:30 / 32
页数:3
相关论文
共 50 条
[41]   Inequalities for the spectral radius and essential spectral radius of positive operators on Banach sequence spaces [J].
Peperko, Aljosa .
POSITIVITY, 2021, 25 (04) :1659-1675
[42]   CEVA'S TRIANGLE INEQUALITIES [J].
Benyi, Arpad ;
Curgus, Branko .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02) :591-609
[43]   Reverse triangle inequalities for potentials [J].
Pritsker, I. E. ;
Saff, E. B. .
JOURNAL OF APPROXIMATION THEORY, 2009, 159 (01) :109-127
[44]   On the spaces dual to combinatorial Banach spaces [J].
Borodulin-Nadzieja, Piotr ;
Jachimek, Sebastian ;
Pelczar-Barwacz, Anna .
MATHEMATISCHE NACHRICHTEN, 2025, 298 (03) :998-1017
[45]   NUMERICAL RADIUS INEQUALITIES VIA TRIANGLE-TYPE INEQUALITIES [J].
Timroi, Badria ;
Omidvar, Mohsen Erfanian .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (03) :951-958
[46]   ON SOME GENERALIZED NORM TRIANGLE INEQUALITIES [J].
Pecaric, Josip ;
Rajic, Rajna .
RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2013, 17 (515) :43-52
[47]   Regular random choice and the triangle inequalities [J].
Sprumont, Yves .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2022, 110
[48]   OPERATOR INEQUALITIES VIA THE TRIANGLE INEQUALITY [J].
Sababheh, Mohammad ;
Furuichi, Shigeru ;
Moradi, Hamid Reza .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02) :631-642
[49]   Triangle inequalities in international trade: The neglected dimension [J].
Foellmi, Reto ;
Hepenstrick, Christian ;
Torun, David .
JOURNAL OF INTERNATIONAL ECONOMICS, 2024, 152
[50]   The Proofs of Triangle Inequality Using Binomial Inequalities [J].
Barnes, Benedict ;
Owusu-Ansah, E. D. J. ;
Amponsah, S. K. ;
Adjei, I. A. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 11 (01) :352-361