Impacts of landscape change on wolf restoration success: Planning a reintroduction program based on static and dynamic spatial models

被引:75
作者
Carroll, C
Phillips, MK
Schumaker, NH
Smith, DW
机构
[1] Klamath Ctr Conservat Res, Orleans, CA 95556 USA
[2] Turner Endangered Species Fund, Bozeman, MT 59718 USA
[3] US EPA, Western Ecol Div, Corvallis, OR 97333 USA
[4] Yellowstone Natl Pk, Yellowstone Ctr Resources, Yellowstone Natl Pk, WY 82190 USA
关键词
D O I
10.1046/j.1523-1739.2003.01552.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Mammalian carnivores are increasingly the focus of reintroduction attempts in areas from which they have been extirpated by historic persecution. We used static and dynamic spatial models to evaluate whether a proposed wolf reintroduction to the southern Rocky Mountain region (U.S.A) would advance recovery by increasing species distribution beyond what might be expected through natural range expansion. We used multiple logistic regression to develop a resource-selection function relating wolf distribution in the Greater Yellowstone region with regional-scale habitat variables. We also used a spatially explicit population model to predict wolf distribution and viability at several potential reintroduction sites within the region under current conditions and under two contrasting predictions of future landscape change. Areas of the southern Rocky Mountains with resource-selection-function values similar to those of currently inhabited areas in Yellowstone could potentially support >1000 wolves, 40% within protected areas and 47% on unprotected public lands. The dynamic model predicted similar distribution under current conditions but suggested that development trends over 25 years may result in the loss of one of four potential regional subpopulations and increased isolation of the remaining areas. The reduction in carrying capacity due to landscape change ranged from 49% to 66%, depending on assumptions about road development on public lands. Although much of the wolf population occurs outside core protected areas, these areas remain the key to the persistence of subpopulations. Although the dynamic model's sensitivity to dispersal parameters made it difficult to predict the probability of natural recolonization from distant sources, it suggested that an active reintroduction to two sites within the region may be necessary to ensure low extinction probability. Social carnivores such as the wolf, which often require larger territories than solitary species of similar size, may be more vulnerable to environmental stochasticity and landscape fragmentation than their vagility and fecundity would suggest.
引用
收藏
页码:536 / 548
页数:13
相关论文
共 52 条
[1]  
[Anonymous], FOREST FRAGMENTATION
[2]  
BALLARD WB, 1987, WILDLIFE MONOGR, P1
[3]  
Bangs EE, 1996, WILDLIFE SOC B, V24, P402
[4]  
Bangs EE, 1998, WILDLIFE SOC B, V26, P785
[5]  
BENNETT LE, 1994, COLORADO GRAY WOLF R
[6]   Relating populations to habitats using resource selection functions [J].
Boyce, MS ;
McDonald, LL .
TRENDS IN ECOLOGY & EVOLUTION, 1999, 14 (07) :268-272
[7]  
Breitenmoser U, 2001, CONSERV BIOL SER, V5, P241
[8]   TURNOVER RATES IN INSULAR BIOGEOGRAPHY - EFFECT OF IMMIGRATION ON EXTINCTION [J].
BROWN, JH ;
KODRICBROWN, A .
ECOLOGY, 1977, 58 (02) :445-449
[9]  
Brown WM, 2001, LARGE MAMMAL RESTORATION: ECOLOGICAL AND SOCIOLOGICAL CHALLENGES IN THE 21ST CENTURY, P169
[10]   Carnivores as focal species for conservation planning in the Rocky Mountain region [J].
Carroll, C ;
Noss, RF ;
Paquet, PC .
ECOLOGICAL APPLICATIONS, 2001, 11 (04) :961-980