NEW HIERARCHIES OF DERIVATIVE NONLINEAR SCHRODINGER-TYPE EQUATION

被引:0
作者
Wu, Zhiwei [1 ]
He, Jingsong [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
关键词
Lie algebra splitting; DNLS-type equations; nonlocal reduction; SOLITONS; OPTICS; SYMMETRY; WAVES; TRANSFORMATIONS; MODULATION; GEOMETRY; LATTICES; PARALLEL; SYSTEMS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generate hierarchies of derivative nonlinear Schrodinger-type equations and their nonlocal extensions from Lie algebra splittings and automorphisms. This provides an algebraic explanation of some known reductions and newly established nonlocal reductions in integrable systems.
引用
收藏
页码:79 / 98
页数:20
相关论文
共 67 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[4]  
AKHMEDIEV NN, 1985, ZH EKSP TEOR FIZ+, V89, P1542
[5]   NON-LINEAR ASYMMETRIC SELF-PHASE MODULATION AND SELF-STEEPENING OF PULSES IN LONG OPTICAL-WAVEGUIDES [J].
ANDERSON, D ;
LISAK, M .
PHYSICAL REVIEW A, 1983, 27 (03) :1393-1398
[6]  
Bagnato VS, 2015, ROM REP PHYS, V67, P5
[7]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[8]   Implementation of PT symmetric devices using plasmonics: principle and applications [J].
Benisty, Henri ;
Degiron, Aloyse ;
Lupu, Anatole ;
De Lustrac, Andre ;
Chenais, Sebastien ;
Forget, Sebastien ;
Besbes, Mondher ;
Barbillon, Gregory ;
Bruyant, Aurelien ;
Blaize, Sylvain ;
Lerondel, Gilles .
OPTICS EXPRESS, 2011, 19 (19) :18004-18019
[9]   PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard [J].
Bittner, S. ;
Dietz, B. ;
Guenther, U. ;
Harney, H. L. ;
Miski-Oglu, M. ;
Richter, A. ;
Schaefer, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (02)
[10]   PERTURBATION-THEORY OF ODD ANHARMONIC-OSCILLATORS [J].
CALICETI, E ;
GRAFFI, S ;
MAIOLI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (01) :51-66