Short hairpin type of dsRNAs that are controlled by tRNAVal promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells

被引:190
作者
Kawasaki, H
Taira, K [1 ]
机构
[1] Univ Tokyo, Dept Chem & Biotechnol, Sch Engn, Bunkyo Ku, Tokyo 1138656, Japan
[2] Natl Inst Adv Ind Sci & Technol, Gene Funct Res Lab, Tsukuba 3058562, Japan
关键词
D O I
10.1093/nar/gkg158
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The post-transcriptional gene silencing in animals and plants is called RNA interference (RNAi). Guides for the sequence-specific degradation of mRNA are 21-nt small interfering RNAs (siRNAs) that are generated by Dicer-dependent cleavage from longer double-stranded RNAs (dsRNAs). To examine the relationship between the localization of dsRNA and the target cleavage of RNAi in human cells, we constructed five kinds of dsRNA expression vector that were controlled by tRNA(Val) or U6 promoter. Transcripts of tRNA-dsRNA were consistently localized in the cytoplasm and were efficiently processed by Dicer. In contrast, transcripts of tRNA-dsRNA were not processed in cells that expressed Dicer-directed ribozymes. In addition, transcripts of U6-dsRNA were basically localized in the nucleus and were not significantly processed, unless the transcripts of U6-dsRNAs possessed a microRNA-based loop motif: in the latter case, U6-dsRNAs with a microRNA-based loop were transported to the cytoplasm and were effectively processed. Moreover, tRNA-dsRNA directed against a mutant k-ras transcript cleaved its target mRNA efficiently in assays of RNAi not only in vitro with a cytoplasmic extract but also in vivo. Therefore, it appears that RNAi in human cells occur in the cytoplasm. Importantly, the same tRNA-dsRNA did not affect the degradation of the normal k-ras mRNA in vitro and in vivo. Our tRNA-dsRNA technology should be a powerful tool for studies of the mechanism of RNAi and the functions of various genes in mammalian cells with potential utility as a therapeutic agent.
引用
收藏
页码:700 / 707
页数:8
相关论文
共 60 条
[1]   Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D-melanogaster germline [J].
Aravin, AA ;
Naumova, NM ;
Tulin, AV ;
Vagin, VV ;
Rozovsky, YM ;
Gvozdev, VA .
CURRENT BIOLOGY, 2001, 11 (13) :1017-1027
[2]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[3]  
Bernstein E, 2001, RNA, V7, P1509
[4]  
Bertrand E, 1997, RNA, V3, P75
[5]   Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines [J].
Billy, E ;
Brondani, V ;
Zhang, HD ;
Müller, U ;
Filipowicz, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14428-14433
[6]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[7]   RNA interference is mediated by 21-and 22-nucleotide RNAs [J].
Elbashir, SM ;
Lendeckel, W ;
Tuschl, T .
GENES & DEVELOPMENT, 2001, 15 (02) :188-200
[8]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[9]   Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate [J].
Elbashir, SM ;
Martinez, J ;
Patkaniowska, A ;
Lendeckel, W ;
Tuschl, T .
EMBO JOURNAL, 2001, 20 (23) :6877-6888
[10]   RNA-triggered gene silencing [J].
Fire, A .
TRENDS IN GENETICS, 1999, 15 (09) :358-363