H∞ synchronization of chaotic systems using output feedback control design

被引:111
作者
Hou, Yi-You
Liao, Teh-Lu [1 ]
Yan, Jun-Juh
机构
[1] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 701, Taiwan
[2] Shu Te Univ, Dept Comp & Commun, Kaohsiung 824, Taiwan
关键词
chaotic systems; Lyapunov theory; linear matrix inequality (LMI); linear matrix equality (LME);
D O I
10.1016/j.physa.2006.12.033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article investigates the H-infinity synchronization problem for a general class of chaotic systems. Based on Lyapunov theory, linear matrix inequality (LMI) and linear matrix equality (LME) formulation, the output feedback controller is established to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance to an H-infinity-norm constraint. Two illustrative examples are provided to demonstrate the effectiveness of the developed theoretical results. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 22 条
[1]  
ANTON S, H CONTROL PROBLEM
[2]  
Boy S., 1994, Linear MatrixInequalities in System and Control Theory
[3]   Robust synchronization of chaotic Lur'e systems via delayed feedback control [J].
Chen, CL ;
Feng, G ;
Guan, XP .
PHYSICS LETTERS A, 2004, 321 (5-6) :344-354
[4]   CHAOS IN AN EFFECTIVE 4-NEURON NEURAL NETWORK [J].
DAS, PK ;
SCHIEVE, WC ;
ZENG, ZJ .
PHYSICS LETTERS A, 1991, 161 (01) :60-66
[5]   An observer-based approach for chaotic synchronization with applications to secure communications [J].
Liao, TL ;
Huang, NS .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1999, 46 (09) :1144-1150
[6]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[7]   Model-free control of affine chaotic systems [J].
Qi, GY ;
Chen, ZQ ;
Yuan, ZZ .
PHYSICS LETTERS A, 2005, 344 (2-4) :189-202
[8]   On an optimal control design for Rossler system [J].
Rafikov, M ;
Balthazar, JM .
PHYSICS LETTERS A, 2004, 333 (3-4) :241-245
[9]   A reduced-order observer for the synchronization of Lorenz systems [J].
Solak, E .
PHYSICS LETTERS A, 2004, 325 (3-4) :276-278
[10]   Impulsive control and synchronization of Chua's oscillators [J].
Sun, JT ;
Zhang, YP .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 66 (06) :499-508