Quantum percolation transition in three dimensions: Density of states, finite-size scaling, and multifractality

被引:10
作者
Ujfalusi, Laszlo [1 ]
Varga, Imre [1 ]
机构
[1] Budapesti Muszaki Gazdasagtudomanyi Egyetem, Fiz Intezet, Elmeleti Fiz Tanszek, H-1521 Budapest, Hungary
关键词
LOCALIZATION; SYSTEMS;
D O I
10.1103/PhysRevB.90.174203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase diagram of the metal-insulator transition in a three-dimensional quantum percolation problem is investigated numerically based on the multifractal analysis of the eigenstates. The large-scale numerical simulation has been performed on systems with linear sizes up to L = 140. The multifractal dimensions, exponents D-q and alpha(q), have been determined in the range of 0 <= q <= 1. Our results confirm that this problem belongs to the same universality class as the three-dimensional Anderson model; the critical exponent of the localization length was found to be nu = 1.622 +/- 0.035. However, the multifractal function f(alpha) and the exponents D-q and alpha(q) produced anomalous variations along the phase boundary, p(c)(Q) (E).
引用
收藏
页数:12
相关论文
共 32 条
[21]   Multifractal finite-size scaling and universality at the Anderson transition [J].
Rodriguez, Alberto ;
Vasquez, Louella J. ;
Slevin, Keith ;
Roemer, Rudolf A. .
PHYSICAL REVIEW B, 2011, 84 (13)
[22]   Multifractal Analysis with the Probability Density Function at the Three-Dimensional Anderson Transition [J].
Rodriguez, Alberto ;
Vasquez, Louella J. ;
Romer, Rudolf A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (10)
[23]   Multifractal analysis of the metal-insulator transition in the three-dimensional Anderson model. II. Symmetry relation under ensemble averaging [J].
Rodriguez, Alberto ;
Vasquez, Louella J. ;
Roemer, Rudolf A. .
PHYSICAL REVIEW B, 2008, 78 (19)
[24]   NEW APPROACH TO LOCALIZATION - QUANTUM CONNECTIVITY [J].
ROOT, LJ ;
BAUER, JD ;
SKINNER, JL .
PHYSICAL REVIEW B, 1988, 37 (10) :5518-5521
[25]   On large-scale diagonalization techniques for the Anderson model of localization [J].
Schenk, Olaf ;
Bollhoefer, Matthias ;
Roemer, Rudolf A. .
SIAM REVIEW, 2008, 50 (01) :91-112
[26]  
Schubert G, 2009, LECT NOTES PHYS, V762, P135, DOI 10.1007/978-3-540-85428-9_5
[27]   QUANTUM PERCOLATION IN 3-DIMENSIONAL SYSTEMS [J].
SOUKOULIS, CM ;
LI, QM ;
GREST, GS .
PHYSICAL REVIEW B, 1992, 45 (14) :7724-7729
[28]   PRIMME: PReconditioned Iterative MultiMethod Eigensolver-Methods and Software Description [J].
Stathopoulos, Andreas ;
McCombs, James R. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2010, 37 (02)
[29]   REEXAMINATION OF 3D PERCOLATION-THRESHOLD ESTIMATES [J].
STAUFFER, D ;
ZABOLITZKY, JG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (17) :3705-3706
[30]   Surface criticality and multifractality at localization transitions [J].
Subramaniam, AR ;
Gruzberg, IA ;
Ludwig, AWW ;
Evers, F ;
Mildenberger, A ;
Mirlin, AD .
PHYSICAL REVIEW LETTERS, 2006, 96 (12)