Optimization of the power conversion efficiency in high bandgap pyridopyridinedithiophene-based conjugated polymers for organic photovoltaics by the random terpolymer approach

被引:6
作者
Gedefaw, Desta [1 ]
Sharma, Anirudh [1 ,2 ]
Pan, Xun [1 ]
Bjuggren, Jonas M. [1 ]
Kroon, Renee [3 ]
Gregoriou, Vasilis G. [4 ]
Chochos, Christos L. [4 ]
Andersson, Mats R. [1 ,2 ]
机构
[1] Univ South Australia, Future Ind Inst, Mawson Lakes, SA 5095, Australia
[2] Flinders Univ S Australia, Flinders Ctr Nanoscale Sci & Technol, Sturt Rd, Adelaide, SA 5042, Australia
[3] Chalmers, Dept Chem & Chem Engn, Polymer Technol, SE-41296 Gothenburg, Sweden
[4] Advent Technol SA, Patras Sci Pk,Stadiou St, Platani Rio 26504, Patra, Greece
关键词
Pyridopyridinedithiophene; Photovoltaic; Power conversion efficiency; Terpolymer; HETEROJUNCTION SOLAR-CELLS; MORPHOLOGY CONTROL; GAP POLYMERS; SIDE-CHAINS; QUINOXALINE; COPOLYMERS; DONOR; BENZODITHIOPHENE; STABILITY; TANDEM;
D O I
10.1016/j.eurpolymj.2017.03.044
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We report that the organic photovoltaic (OPV) performance of wide band gap pyridopyridine-dithiophene-based conjugated polymers can be significantly improved by employing the random terpolymer approach for the development of new pyridopyridinedithiophene-based conjugated polymers. This is demonstrated by the synthesis of the alternating copolymer (P1) consisting of 3,3'-difluoro-2,2'-bithiophene and pyridopyridinedithiophene and the random terpolymer (P2) containing pyridopyridinedithiophene 3,3'-difluoro-2,2'-bithiophene and thiophene. OPV devices fabricated by P1 and P2 in combination with PC61BM and PC71BM in an inverted device configuration exhibited power conversion efficiencies (PCEs) of 1.5% and 4.0%, respectively. We identified that the main reason for the enhanced performance of the OPV devices based on the P2 random copolymer was the improved morphology (miscibility) between P2 and PCBM as compared to P1. More specifically, atomic force microscopy (AFM) and scanning electron microscopy (SEM) studies revealed that the P1 based films showed rougher surface with clear crystallization/precipitation of the polymer chains even after the addition of chloronaphthalene (CN) to the chloroform processing solvent which significantly limited the short circuit current density (J(sc)) fill factor (FF) and overall performance of the prepared photovoltaic devices. On the other hand, P2 based films showed better miscibility with the acceptor particularly when processed using 5% CN containing chloroform solvent giving a respectable improvement in the PCE of the photovoltaic devices.
引用
收藏
页码:92 / 99
页数:8
相关论文
共 32 条
[21]   High-Performance Polymer Solar Cells with PCE of 10.42% via Al-Doped ZnO Cathode Interlayer [J].
Liu, Xiaohui ;
Li, Xiaodong ;
Li, Yaru ;
Song, Changjian ;
Zhu, Liping ;
Zhang, Wenjun ;
Wang, Hai-Qiao ;
Fang, Junfeng .
ADVANCED MATERIALS, 2016, 28 (34) :7405-7412
[22]   Identifying Homocouplings as Critical Side Reactions in Direct Arylation Polycondensation [J].
Lombeck, Florian ;
Komber, Hartmut ;
Gorelsky, Serge I. ;
Sommer, Michael .
ACS MACRO LETTERS, 2014, 3 (08) :819-823
[23]   A New Quinoxaline and Isoindigo Based Polymer as Donor Material for Solar Cells: Role of Ecofriendly Processing Solvents on the Device Efficiency and Stability [J].
Seri, Mirko ;
Gedefaw, Desta ;
Prosa, Mario ;
Tessarolo, Marta ;
Bolognesi, Margherita ;
Muccini, Michele ;
Andersson, Mats R. .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2017, 55 (02) :234-242
[24]   Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer [J].
Sun, Yanming ;
Seo, Jung Hwa ;
Takacs, Christopher J. ;
Seifter, Jason ;
Heeger, Alan J. .
ADVANCED MATERIALS, 2011, 23 (14) :1679-+
[25]   Property modulation of ternary copolymer via the diverse arrangements of two different repeating units for polymer solar cells and thin film transistors [J].
Tamilavan, Vellaiappillai ;
Liu, Yanliang ;
Agneeswari, Rajalingam ;
Lee, Dal Yong ;
Cho, Shinuk ;
Jin, Youngeup ;
Park, Sung Heum ;
Hyun, Myung Ho .
POLYMER, 2016, 95 :18-25
[26]  
Tao Q., 2016, J MAT CHEM A
[27]   Structural tuning of quinoxaline-benzodithiophene copolymers via alkyl side chain manipulation: synthesis, characterization and photovoltaic properties [J].
Tessarolo, Marta ;
Gedefaw, Desta ;
Bolognesi, Margherita ;
Liscio, Fabiola ;
Henriksson, Patrik ;
Zhuang, Wenliu ;
Milita, Silvia ;
Muccini, Michele ;
Wang, Ergang ;
Seri, Mirko ;
Andersson, Mats R. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (29) :11162-11170
[28]   Fluorination as an effective tool to increase the open-circuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b:3,4-b′]dithiophene-alt-quinoxaline) copolymers [J].
Verstappen, Pieter ;
Kesters, Jurgen ;
Vanormelingen, Wouter ;
Heintges, Gael H. L. ;
Drijkoningen, Jeroen ;
Vangerven, Tim ;
Marin, Lidia ;
Koudjina, Simplice ;
Champagne, Benoit ;
Manca, Jean ;
Lutsen, Laurence ;
Vanderzande, Dirk ;
Maes, Wouter .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (06) :2960-2970
[29]   Effect of processing additive on morphology and charge extraction in bulk-heterojunction solar cells [J].
Wang, Dong Hwan ;
Morin, Pierre-Olivier ;
Lee, Chang-Lyoul ;
Kyaw, Aung Ko Ko ;
Leclerc, Mario ;
Heeger, Alan J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (36) :15052-15057
[30]   A polymer tandem solar cell with 10.6% power conversion efficiency [J].
You, Jingbi ;
Dou, Letian ;
Yoshimura, Ken ;
Kato, Takehito ;
Ohya, Kenichiro ;
Moriarty, Tom ;
Emery, Keith ;
Chen, Chun-Chao ;
Gao, Jing ;
Li, Gang ;
Yang, Yang .
NATURE COMMUNICATIONS, 2013, 4