Effects on Plant Growth and Reproduction of a Peach R2R3-MYB Transcription Factor Overexpressed in Tobacco

被引:38
作者
Rahim, Md Abdur [1 ,3 ]
Resentini, Francesca [1 ,4 ]
Dalla Vecchia, Francesca [1 ,2 ]
Trainotti, Livio [1 ,2 ]
机构
[1] Univ Padua, Dept Biol, Padua, Italy
[2] Univ Padua, Orto Bot, Padua, Italy
[3] Sher E Bangia Agr Univ, Dept Genet & Plant Breeding, Dhaka, Bangladesh
[4] Univ Politecn Valencia, Inst Biol Mol & Celular Plantas, Consejo Super 20 Invest Cient CSIC, Valencia, Spain
来源
FRONTIERS IN PLANT SCIENCE | 2019年 / 10卷
关键词
anthocyanin; epidermis; flower; gametophyte; Nicotiana tabacum; trichome; transcription factor; ANTHOCYANIN BIOSYNTHETIC-PATHWAY; DOMAIN PROTEINS INTERACT; OBSERVING POLLEN TUBES; GENE-EXPRESSION; ARABIDOPSIS-THALIANA; STAMEN DEVELOPMENT; OVULE DEVELOPMENT; RED COLORATION; MYB; ACCUMULATION;
D O I
10.3389/fpls.2019.01143
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In plants, anthocyanin production is controlled by MYB and bHLH transcription factors. In peach, among the members of these families, MYB10.1 and bHLH3 have been shown to be the most important genes for production of these pigments during fruit ripening. Anthocyanins are valuable molecules, and the overexpression of regulatory genes in annual fast-growing plants has been explored for their biotechnological production. The overexpression of peach MYB10.1 in tobacco plants induced anthocyanin pigmentation, which was particularly strong in the reproductive parts. Pigment production was the result of an up-regulation of the expression level of key genes of the flavonoid biosynthetic pathway, such as NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, as well as of the proanthocyanidin biosynthetic pathway such as NtLAR. Nevertheless, phenotypic alterations in transgenic tobacco lines were not only limited to anthocyanin production. Lines showing a strong phenotype (type I) exhibited irregular leaf shape and size and reduced plant height. Moreover, flowers had reduced length of anther's filament, nondehiscent anthers, reduced pistil length, aborted nectary glands, and impaired capsule development, but the reproductive parts including androecium, gynoecium, and petals were more pigmented that in wild type. Surprisingly, overexpression of peach MYB10.1 led to suppression of NtMYB305, which is required for floral development and, of one of its target genes, NECTARIN1 (NtNCE1), involved in the nectary gland formation. MYB10.1 overexpression up-regulated JA biosynthetic (NtAOS) and signaling (NtJAZd) genes, as well as 1-aminocyclopropane-1-carboxylate oxidase (NtACO) in flowers. The alteration of these hormonal pathways might be among the causes of the observed floral abnormalities with defects in both male and female gametophyte development. In particular, approximately only 30% of pollen grains of type I lines were viable, while during megaspore formation, there was a block during FG1 (St3-II). This block seemed to be associated to an excessive accumulation of callose. It can be concluded that the overexpression of peach MYB10.1 in tobacco not only regulates flavonoid biosynthesis (anthocyanin and proanthocyanidin) in the reproductive parts but also plays a role in other processes such as vegetative and reproductive development.
引用
收藏
页数:17
相关论文
共 99 条
[1]   A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots [J].
Albert, Nick W. ;
Davies, Kevin M. ;
Lewis, David H. ;
Zhang, Huaibi ;
Montefiori, Mirco ;
Brendolise, Cyril ;
Boase, Murray R. ;
Ngo, Hanh ;
Jameson, Paula E. ;
Schwinn, Kathy E. .
PLANT CELL, 2014, 26 (03) :962-980
[2]   Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures [J].
Appelhagen, Ingo ;
Wulff-Vester, Anders Keim ;
Wendell, Micael ;
Hvoslef-Eide, Anne-Kathrine ;
Russell, Julia ;
Oertel, Anne ;
Martens, Stefan ;
Mock, Hans-Peter ;
Martin, Cathie ;
Matros, Andrea .
METABOLIC ENGINEERING, 2018, 48 :218-232
[3]   Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active [J].
Bai, Yanhong ;
Pattanaik, Sitakanta ;
Patra, Barunava ;
Werkman, Joshua R. ;
Xie, Claire H. ;
Yuan, Ling .
PLANTA, 2011, 234 (02) :363-375
[4]   Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin [J].
Ban, Yusuke ;
Honda, Chikako ;
Hatsuyama, Yoshimichi ;
Igarashi, Megumi ;
Bessho, Hideo ;
Moriguchi, Takaya .
PLANT AND CELL PHYSIOLOGY, 2007, 48 (07) :958-970
[5]   Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J].
Borevitz, JO ;
Xia, YJ ;
Blount, J ;
Dixon, RA ;
Lamb, C .
PLANT CELL, 2000, 12 (12) :2383-2393
[6]   The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia [J].
Borovsky, Y ;
Oren-Shamir, M ;
Ovadia, R ;
De Jong, W ;
Paran, I .
THEORETICAL AND APPLIED GENETICS, 2004, 109 (01) :23-29
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Jasmonate Passes Muster: A Receptor and Targets for the Defense Hormone [J].
Browse, John .
ANNUAL REVIEW OF PLANT BIOLOGY, 2009, 60 :183-205
[9]   Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors [J].
Butelli, Eugenio ;
Titta, Lucilla ;
Giorgio, Marco ;
Mock, Hans-Peter ;
Matros, Andrea ;
Peterek, Silke ;
Schijlen, Elio G. W. M. ;
Hall, Robert D. ;
Bovy, Arnaud G. ;
Luo, Jie ;
Martin, Cathie .
NATURE BIOTECHNOLOGY, 2008, 26 (11) :1301-1308
[10]   Is the nectar redox cycle a floral defense against microbial attack? [J].
Carter, C ;
Thornburg, RW .
TRENDS IN PLANT SCIENCE, 2004, 9 (07) :320-324