Effects on Plant Growth and Reproduction of a Peach R2R3-MYB Transcription Factor Overexpressed in Tobacco

被引:34
|
作者
Rahim, Md Abdur [1 ,3 ]
Resentini, Francesca [1 ,4 ]
Dalla Vecchia, Francesca [1 ,2 ]
Trainotti, Livio [1 ,2 ]
机构
[1] Univ Padua, Dept Biol, Padua, Italy
[2] Univ Padua, Orto Bot, Padua, Italy
[3] Sher E Bangia Agr Univ, Dept Genet & Plant Breeding, Dhaka, Bangladesh
[4] Univ Politecn Valencia, Inst Biol Mol & Celular Plantas, Consejo Super 20 Invest Cient CSIC, Valencia, Spain
来源
关键词
anthocyanin; epidermis; flower; gametophyte; Nicotiana tabacum; trichome; transcription factor; ANTHOCYANIN BIOSYNTHETIC-PATHWAY; DOMAIN PROTEINS INTERACT; OBSERVING POLLEN TUBES; GENE-EXPRESSION; ARABIDOPSIS-THALIANA; STAMEN DEVELOPMENT; OVULE DEVELOPMENT; RED COLORATION; MYB; ACCUMULATION;
D O I
10.3389/fpls.2019.01143
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In plants, anthocyanin production is controlled by MYB and bHLH transcription factors. In peach, among the members of these families, MYB10.1 and bHLH3 have been shown to be the most important genes for production of these pigments during fruit ripening. Anthocyanins are valuable molecules, and the overexpression of regulatory genes in annual fast-growing plants has been explored for their biotechnological production. The overexpression of peach MYB10.1 in tobacco plants induced anthocyanin pigmentation, which was particularly strong in the reproductive parts. Pigment production was the result of an up-regulation of the expression level of key genes of the flavonoid biosynthetic pathway, such as NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, as well as of the proanthocyanidin biosynthetic pathway such as NtLAR. Nevertheless, phenotypic alterations in transgenic tobacco lines were not only limited to anthocyanin production. Lines showing a strong phenotype (type I) exhibited irregular leaf shape and size and reduced plant height. Moreover, flowers had reduced length of anther's filament, nondehiscent anthers, reduced pistil length, aborted nectary glands, and impaired capsule development, but the reproductive parts including androecium, gynoecium, and petals were more pigmented that in wild type. Surprisingly, overexpression of peach MYB10.1 led to suppression of NtMYB305, which is required for floral development and, of one of its target genes, NECTARIN1 (NtNCE1), involved in the nectary gland formation. MYB10.1 overexpression up-regulated JA biosynthetic (NtAOS) and signaling (NtJAZd) genes, as well as 1-aminocyclopropane-1-carboxylate oxidase (NtACO) in flowers. The alteration of these hormonal pathways might be among the causes of the observed floral abnormalities with defects in both male and female gametophyte development. In particular, approximately only 30% of pollen grains of type I lines were viable, while during megaspore formation, there was a block during FG1 (St3-II). This block seemed to be associated to an excessive accumulation of callose. It can be concluded that the overexpression of peach MYB10.1 in tobacco not only regulates flavonoid biosynthesis (anthocyanin and proanthocyanidin) in the reproductive parts but also plays a role in other processes such as vegetative and reproductive development.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis
    Arce-Rodriguez, Magda L.
    Ochoa-Alejoa, Neftali
    PLANT PHYSIOLOGY, 2017, 174 (03) : 1359 - 1370
  • [2] The R2R3-MYB Transcription Factor Gene Family in Maize
    Du, Hai
    Feng, Bo-Run
    Yang, Si-Si
    Huang, Yu-Bi
    Tang, Yi-Xiong
    PLOS ONE, 2012, 7 (06):
  • [3] The R2R3-MYB Transcription Factor MYB49 Regulates Cadmium Accumulation
    Zhang, Ping
    Wang, Ruling
    Ju, Qiong
    Li, Weiqiang
    Lam-Son Phan Tran
    Xu, Jin
    PLANT PHYSIOLOGY, 2019, 180 (01) : 529 - 542
  • [4] The R2R3-MYB transcription factor GaPC controls petal coloration in cotton
    Caiping Cai
    Fan Zhou
    Weixi Li
    Yujia Yu
    Zhihan Guan
    Baohong Zhang
    Wangzhen Guo
    The Crop Journal, 2023, 11 (05) : 1319 - 1330
  • [5] Multiple R2R3-MYB Transcription Factors Involved in the Regulation of Anthocyanin Accumulation in Peach Flower
    Zhou, Hui
    Peng, Qian
    Zhao, Jianbo
    Owiti, Albert
    Ren, Fei
    Liao, Liao
    Wang, Lu
    Deng, Xianbao
    Jiang, Quan
    Han, Yuepeng
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [6] The R2R3-MYB transcription factor GaPC controls petal coloration in cotton
    Cai, Caiping
    Zhou, Fan
    Li, Weixi
    Yu, Yujia
    Guan, Zhihan
    Zhang, Baohong
    Guo, Wangzhen
    CROP JOURNAL, 2023, 11 (05): : 1319 - 1330
  • [7] Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway
    Deluc, L
    Barrieu, F
    Marchive, C
    Lauvergeat, V
    Decendit, A
    Richard, T
    Carde, JP
    Merillon, JM
    Hamdi, S
    PLANT PHYSIOLOGY, 2006, 140 (02) : 499 - 511
  • [8] R2R3-MYB TRANSCRIPTION FACTOR, MYB6, , FROM GRAPES CONFERS ENHANCED SALT STRESS TOLERANCE IN TRANSGENIC TOBACCO
    Han, F. F.
    Jia, K. Y.
    Li, K. W.
    Zhu, Z. G.
    Li, G. R.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2024,
  • [9] The R2R3-MYB transcription factor MYB44 modulates carotenoid biosynthesis in Ulva prolifera
    He, Yuan
    Li, Mengru
    Wang, Yehua
    Shen, Songdong
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2022, 62
  • [10] A new role for plant R2R3-MYB transcription factors in cell cycle regulation
    Eleonora Cominelli
    Chiara Tonelli
    Cell Research, 2009, 19 : 1231 - 1232