Deep reinforcement learning-based optimal data-driven control of battery energy storage for power system frequency support

被引:17
|
作者
Yan, Ziming [1 ]
Xu, Yan [1 ]
Wang, Yu [1 ]
Feng, Xue [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[2] Singapore Inst Technol, Singapore, Singapore
关键词
power generation control; optimisation; frequency control; secondary cells; battery storage plants; optimal control; learning (artificial intelligence); power engineering computing; battery lifetime degradation; battery cycle aging cost; generation cost; total operational cost; power system frequency support; BESS controller performance; optimal BESS control method; three-area power system; optimal data-driven control; battery energy storage system; power system frequency control; battery aging; intensive charge-discharge cycles; high-operating costs; deep reinforcement learning; data-driven approach; real-time power imbalance mitigation; unscheduled interchange price; actor-critic model; ION BATTERIES; DEGRADATION; COST;
D O I
10.1049/iet-gtd.2020.0884
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A battery energy storage system (BESS) is an effective solution to mitigate real-time power imbalance by participating in power system frequency control. However, battery aging resulted from intensive charge-discharge cycles will inevitably lead to lifetime degradation, which eventually incurs high-operating costs. This study proposes a deep reinforcement learning-based data-driven approach for optimal control of BESS for frequency support considering the battery lifetime degradation. A cost model considering battery cycle aging cost, unscheduled interchange price, and generation cost is proposed to estimate the total operational cost of BESS for power system frequency support, and an actor-critic model is designed for optimising the BESS controller performance. The effectiveness of the proposed optimal BESS control method is verified in a three-area power system.
引用
收藏
页码:6071 / 6078
页数:8
相关论文
共 50 条
  • [21] Deep Reinforcement Learning-Based Security-Constrained Battery Scheduling in Home Energy System
    Wang, Bo
    Zha, Zhongyi
    Zhang, Lijun
    Liu, Lei
    Fan, Huijin
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3548 - 3561
  • [22] Control Strategy of Microgrid Energy Storage System Based on Deep Reinforcement Learning
    Liang H.
    Li H.
    Zhang H.
    Hu Z.
    Qin Z.
    Cao J.
    Dianwang Jishu/Power System Technology, 2021, 45 (10): : 3869 - 3876
  • [23] Data-driven Optimal Control Strategy for Virtual Synchronous Generator via Deep Reinforcement Learning Approach
    Li, Yushuai
    Gao, Wei
    Yan, Weihang
    Huang, Shuo
    Wang, Rui
    Gevorgian, Vahan
    Gao, David Wenzhong
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2021, 9 (04) : 919 - 929
  • [24] A Deep Reinforcement Learning Based Framework for Power System Load Frequency Control
    Zhang, Guanyu
    Teng, Mengjie
    Chen, Chen
    Bie, Zhaohong
    2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 1801 - 1805
  • [25] Deep Reinforcement Learning Based Data-Driven Mapping Mechanism of Digital Twin for Internet of Energy
    Xu, Siyu
    Guan, Xin
    Peng, Yu
    Liu, Yang
    Cui, Chen
    Chen, Hongyang
    Ohtsuki, Tomoaki
    Han, Zhu
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (04): : 3876 - 3890
  • [26] Deep Learning Optimal Control for a Complex Hybrid Energy Storage System
    Zsembinszki, Gabriel
    Fernandez, Cesar
    Verez, David
    Cabeza, Luisa F.
    BUILDINGS, 2021, 11 (05)
  • [27] Deep Reinforcement Learning-Based Optimal Parameter Design of Power Converters
    Bui, Van-Hai
    Chang, Fangyuan
    Su, Wencong
    Wang, Mengqi
    Murphey, Yi Lu
    Da Silva, Felipe Leno
    Huang, Can
    Xue, Lingxiao
    Glatt, Ruben
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 25 - 29
  • [28] Optimizing a Battery Energy Storage System for Frequency Control Application in an Isolated Power System
    Mercier, Pascal
    Cherkaoui, Rachid
    Oudalov, Alexandre
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (03) : 1469 - 1477
  • [29] Deep reinforcement learning-based optimal scheduling of integrated energy systems for electricity, heat, and hydrogen storage
    Liang, Tao
    Zhang, Xiaochan
    Tan, Jianxin
    Jing, Yanwei
    Liangnian, Lv
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 233
  • [30] Adaptive neural control of PEMFC system based on data-driven and reinforcement learning approaches
    Lin-Kwong-Chon, Christophe
    Damour, Cedric
    Benne, Michel
    Kadjo, Jean-Jacques Amangoua
    Grondin-Perez, Brigitte
    CONTROL ENGINEERING PRACTICE, 2022, 120