Biased percolation on scale-free networks

被引:33
作者
Hooyberghs, Hans [1 ]
Van Schaeybroeck, Bert [1 ]
Moreira, Andre A. [2 ]
Andrade, Jose S., Jr. [2 ,3 ]
Herrmann, Hans J. [2 ,3 ]
Indekeu, Joseph O. [1 ]
机构
[1] Katholieke Univ Leuven, Inst Theoret Fys, B-3001 Louvain, Belgium
[2] Univ Fed Ceara, Dept Fis, BR-60451970 Fortaleza, Ceara, Brazil
[3] ETH Honggerberg, IFB, CH-8093 Zurich, Switzerland
关键词
COMPLEX NETWORKS; RANDOM GRAPHS; INTERNET; MODEL;
D O I
10.1103/PhysRevE.81.011102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Biased (degree-dependent) percolation was recently shown to provide strategies for turning robust networks fragile and vice versa. Here, we present more detailed results for biased edge percolation on scale-free networks. We assume a network in which the probability for an edge between nodes i and j to be retained is proportional to (k(i)k(j))(-alpha) with k(i) and k(j) the degrees of the nodes. We discuss two methods of network reconstruction, sequential and simultaneous, and investigate their properties by analytical and numerical means. The system is examined away from the percolation transition, where the size of the giant cluster is obtained, and close to the transition, where nonuniversal critical exponents are extracted using the generating-functions method. The theory is found to agree quite well with simulations. By presenting an extension of the Fortuin-Kasteleyn construction, we find that biased percolation is well-described by the q -> 1 limit of the q-state Potts model with inhomogeneous couplings.
引用
收藏
页数:16
相关论文
共 47 条
[11]   Generation of uncorrelated random scale-free networks -: art. no. 027103 [J].
Catanzaro, M ;
Boguñá, M ;
Pastor-Satorras, R .
PHYSICAL REVIEW E, 2005, 71 (02)
[12]   Breakdown of the internet under intentional attack [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3682-3685
[13]   Resilience of the Internet to random breakdowns [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4626-4628
[14]   Efficient immunization strategies for computer networks and populations [J].
Cohen, R ;
Havlin, S ;
ben-Avraham, D .
PHYSICAL REVIEW LETTERS, 2003, 91 (24)
[15]   Scale-free networks are ultrasmall [J].
Cohen, R ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2003, 90 (05) :4
[16]   Percolation critical exponents in scale-free networks [J].
Cohen, R ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW E, 2002, 66 (03) :1-036113
[17]   Inhomogeneous percolation models for spreading phenomena in random graphs [J].
Dall'Asta, L .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :219-256
[18]   Critical phenomena in complex networks [J].
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1275-1335
[19]   Evolution of networks [J].
Dorogovtsev, SN ;
Mendes, JFF .
ADVANCES IN PHYSICS, 2002, 51 (04) :1079-1187
[20]   Potts model on complex networks [J].
Dorogovtsev, SN ;
Goltsev, AV ;
Mendes, JFF .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) :177-182