A Convergent Incoherent Dictionary Learning Algorithm for Sparse Coding

被引:0
作者
Bao, Chenglong [1 ]
Quan, Yuhui [1 ]
Ji, Hui [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
来源
COMPUTER VISION - ECCV 2014, PT VI | 2014年 / 8694卷
关键词
mutual coherence; dictionary learning; sparse coding;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, sparse coding has been widely used in many applications ranging from image recovery to pattern recognition. The low mutual coherence of a dictionary is an important property that ensures the optimality of the sparse code generated from this dictionary. Indeed, most existing dictionary learning methods for sparse coding either implicitly or explicitly tried to learn an incoherent dictionary, which requires solving a very challenging non-convex optimization problem. In this paper, we proposed a hybrid alternating proximal algorithm for incoherent dictionary learning, and established its global convergence property. Such a convergent incoherent dictionary learning method is not only of theoretical interest, but also might benefit many sparse coding based applications.
引用
收藏
页码:302 / 316
页数:15
相关论文
共 28 条
  • [1] [Anonymous], 2010, ICML
  • [2] [Anonymous], NIPS
  • [3] [Anonymous], JMLR
  • [4] [Anonymous], 2010, CVPR
  • [5] [Anonymous], 2004, 2004 C COMP VIS PATT
  • [6] [Anonymous], 2001, IEEE T PATTERN ANAL
  • [7] [Anonymous], 1998, 24 CVC
  • [8] [Anonymous], CVPR
  • [9] [Anonymous], FDN TRENDS OPTIM, DOI DOI 10.1561/2400000003
  • [10] [Anonymous], 1998, VARIATIONAL ANAL GRU