Identification of nonlinear elliptic equations

被引:10
|
作者
Barbu, V [1 ]
Kunisch, K [1 ]
机构
[1] TECH UNIV BERLIN,FACHBEREICH MATH,D-10623 BERLIN,GERMANY
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 1996年 / 33卷 / 02期
关键词
state-dependent parameter estimation; elliptic equations; convex analysis; operator splitting;
D O I
10.1007/BF01183141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An optimization theoretic approach and algorithm for the estimation of state-dependent coefficients in nonlinear elliptic equation is presented. It is based on a splitting method combined with convex analysis techniques, Convergence of the algorithm is established and numerical examples are included.
引用
收藏
页码:139 / 167
页数:29
相关论文
共 50 条
  • [1] Nonlinear degenerate elliptic equations with a convection term
    G. Rita Cirmi
    Salvatore D’Asero
    Journal of Elliptic and Parabolic Equations, 2022, 8 : 1041 - 1066
  • [2] Nodal solutions for some nonlinear elliptic equations
    Ben Mabrouk, Anouar
    Ben Mohamed, Mohamed Lakdar
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) : 589 - 597
  • [3] Inverse coefficient problems for nonlinear elliptic equations
    Yang, Runsheng
    Ou, Yunhua
    ANZIAM JOURNAL, 2007, 49 : 271 - 279
  • [4] Nonlinear degenerate elliptic equations with a convection term
    Cirmi, G. Rita
    D'Asero, Salvatore
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (02) : 1041 - 1066
  • [5] Symmetry of large solutions of nonlinear elliptic equations in a ball
    Porretta, Alessio
    Veron, Laurent
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 236 (02) : 581 - 591
  • [6] ON ELLIPTIC EQUATIONS WITH SINGULAR POTENTIALS AND NONLINEAR BOUNDARY CONDITIONS
    Ferreira, Lucas C. F.
    Neves, Sergio L. N.
    QUARTERLY OF APPLIED MATHEMATICS, 2018, 76 (04) : 699 - 711
  • [7] Nonlinear p(x)-Elliptic Equations in General Domains
    Azroul, Elhoussine
    Khouakhi, Moussa
    Yazough, Chihab
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2022, 30 (03) : 607 - 630
  • [8] LP-estimates for general Nonlinear elliptic equations
    Byun, Sun-Sig
    Wang, Lihe
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (06) : 3193 - 3221
  • [9] Infinitely many solutions for nonlinear elliptic equations with oscillatory potentials
    Jin, Ke
    Li, Yimei
    Wang, Lushun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 409 : 592 - 634
  • [10] Boundary Regularity for Viscosity Solutions of Fully Nonlinear Elliptic Equations
    Silvestre, Luis
    Sirakov, Boyan
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (09) : 1694 - 1717