Specialization Can Drive the Evolution of Modularity

被引:144
作者
Espinosa-Soto, Carlos [1 ,2 ]
Wagner, Andreas [1 ,2 ,3 ]
机构
[1] Univ Zurich, Dept Biochem, Zurich, Switzerland
[2] Swiss Inst Bioinformat, Basel, Switzerland
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
基金
瑞士国家科学基金会;
关键词
REGULATORY NETWORK; ROBUSTNESS; EXPRESSION; MODEL; EVOLVABILITY; PERSPECTIVE; FRAMEWORK; DYNAMICS; MODULE; GENES;
D O I
10.1371/journal.pcbi.1000719
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Organismal development and many cell biological processes are organized in a modular fashion, where regulatory molecules form groups with many interactions within a group and few interactions between groups. Thus, the activity of elements within a module depends little on elements outside of it. Modularity facilitates the production of heritable variation and of evolutionary innovations. There is no consensus on how modularity might evolve, especially for modules in development. We show that modularity can increase in gene regulatory networks as a byproduct of specialization in gene activity. Such specialization occurs after gene regulatory networks are selected to produce new gene activity patterns that appear in a specific body structure or under a specific environmental condition. Modules that arise after specialization in gene activity comprise genes that show concerted changes in gene activities. This and other observations suggest that modularity evolves because it decreases interference between different groups of genes. Our work can explain the appearance and maintenance of modularity through a mechanism that is not contingent on environmental change. We also show how modularity can facilitate co-option, the utilization of existing gene activity to build new gene activity patterns, a frequent feature of evolutionary innovations.
引用
收藏
页数:10
相关论文
共 67 条
[1]  
[Anonymous], 1996, HOME UNIVERSE SEARCH
[2]   The evolution of cell types in animals: emerging principles from molecular studies [J].
Arendt, Detlev .
NATURE REVIEWS GENETICS, 2008, 9 (11) :868-882
[3]   Systems genetics of complex traits in Drosophila melanogaster [J].
Ayroles, Julien F. ;
Carbone, Mary Anna ;
Stone, Eric A. ;
Jordan, Katherine W. ;
Lyman, Richard F. ;
Magwire, Michael M. ;
Rollmann, Stephanie M. ;
Duncan, Laura H. ;
Lawrence, Faye ;
Anholt, Robert R. H. ;
Mackay, Trudy F. C. .
NATURE GENETICS, 2009, 41 (03) :299-307
[4]   Sexual reproduction selects for robustness and negative epistasis in artificial gene networks [J].
Azevedo, RBR ;
Lohaus, R ;
Srinivasan, S ;
Dang, KK ;
Burch, CL .
NATURE, 2006, 440 (7080) :87-90
[5]   The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur [J].
Boer, VM ;
de Winde, JH ;
Pronk, JT ;
Piper, MDW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (05) :3265-3274
[6]  
Bolker JA, 2000, AM ZOOL, V40, P770, DOI 10.1668/0003-1569(2000)040[0770:MIDAWI]2.0.CO
[7]  
2
[8]   Remodeling of yeast genome expression in response to environmental changes [J].
Causton, HC ;
Ren, B ;
Koh, SS ;
Harbison, CT ;
Kanin, E ;
Jennings, EG ;
Lee, TI ;
True, HL ;
Lander, ES ;
Young, RA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :323-337
[9]   Innovation and robustness in complex regulatory gene networks [J].
Ciliberti, S. ;
Martin, O. C. ;
Wagner, A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (34) :13591-13596
[10]   Hox9 genes and vertebrate limb specification [J].
Cohn, MJ ;
Patel, K ;
Krumlauf, R ;
Wilkinson, DG ;
Clarke, JDW ;
Tickle, C .
NATURE, 1997, 387 (6628) :97-101