Thermal enhancement of microchannel heat sink using rib surface refinements

被引:29
作者
Ahmad, Faraz [1 ]
Cheema, Taqi Ahmad [1 ]
Rehman, M. Mohib Ur [1 ]
Abbas, Ahmad [1 ]
Park, Cheol Woo [2 ]
机构
[1] Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Mech Engn, Swabi, Kpk, Pakistan
[2] Kyungpook Natl Univ, Sch Mech Engn, 80 Daehak Ro, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
LAMINAR-FLOW; NUMERICAL-SIMULATION; PERFORMANCE; CAVITIES; OPTIMIZATION; GROOVES;
D O I
10.1080/10407782.2019.1673104
中图分类号
O414.1 [热力学];
学科分类号
摘要
Heat transfer enhancement using the passive method of surface enhancers in microchannel heat sinks (MCHS) is always accompanied by increase in pressure drop and pumping power requirement. To reduce the pressure drop, a novel method of surface refinement is being proposed by transforming the ribs like surface enhancers to streamlined structures of the same cross-section. The performance of MCHS with and without surface refinement has been compared by evaluating pressure drop, Nusselt number and thermal enhancement factor for Reynolds number in the range of 100?1,000. The coning action of ribs results in a tremendous reduction in pressure drop with a negligible reduction in heat transfer thus, leading to a higher thermal enhancement factor for cones than ribs. Moreover, the performance improvement of various refined surfaces has been evaluated by computing percentage changes in pressure drop, Nusselt number, and thermal enhancement factor. Among all the cases, the surface refinement of the ribs has resulted in a maximum pressure drop reduction of 85% whereas the maximum reduction in Nusselt number is 25%; thereby achieving a thermal enhancement factor of 80%. The proposed surface refinement is expected to enhance the thermo-hydraulic characteristics as well as the energy consumptions of future generations of microelectronics.
引用
收藏
页码:851 / 870
页数:20
相关论文
共 24 条
[1]   Thermo-fluid analysis of micro pin-fin array cooling configurations for high heat fluxes with a hot spot [J].
Abdoli, Abas ;
Jimenez, Gianni ;
Dulikravich, George S. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 90 :290-297
[2]   Heat transfer and flow analysis of Al2O3-Water nanofluids in interrupted microchannel heat sink with ellipse and diamond ribs in the transverse microchambers [J].
Abdollahi, Ayoub ;
Sharma, Rajnish N. ;
Mohammed, Hussein A. ;
Vatani, Ashkan .
HEAT TRANSFER ENGINEERING, 2018, 39 (16) :1461-1469
[3]   Hotspot management using a hybrid heat sink with stepped pin-fins [J].
Ansari, Danish ;
Kim, Kwang-Yong .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2019, 75 (06) :359-380
[4]   Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls - Part 1: Heat transfer [J].
Chai, Lei ;
Xia, Guo Dong ;
Wang, Hua Sheng .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 97 :1069-1080
[5]   Experimental microchannel heat sink performance studies using nanofluids [J].
Chein, Reiyu ;
Chuang, Jason .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2007, 46 (01) :57-66
[6]   A Review of Heat Transfer Enhancement through Flow Disruption in a Microchannel [J].
Dewan, Anupam ;
Srivastava, Pankaj .
JOURNAL OF THERMAL SCIENCE, 2015, 24 (03) :203-214
[7]   Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging [J].
Fedorov, AG ;
Viskanta, R .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2000, 43 (03) :399-415
[8]   Heat transfer augmentation in a microchannel heat sink with sinusoidal CrossMark cavities and rectangular ribs [J].
Ghani, Ihsan Ali ;
Kamaruzaman, Natrah ;
Sidik, Nor Azwadi Che .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 108 :1969-1981
[9]   An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid [J].
Ho, C. J. ;
Wei, L. C. ;
Li, Z. W. .
APPLIED THERMAL ENGINEERING, 2010, 30 (2-3) :96-103
[10]  
Hongqi J., 2015, J SEMICOND, V36, P102006