A gradient porous electrode with balanced transport properties and active surface areas for vanadium redox flow batteries

被引:74
作者
Jiang, H. R. [1 ]
Zhang, B. W. [1 ]
Sun, J. [1 ]
Fan, X. Z. [1 ]
Shyy, W. [1 ]
Zhao, T. S. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
关键词
Large-scale energy storage; Vanadium redox flow batteries; Gradient porous electrode; Mass transport; GRAPHITE FELT ELECTRODES; SOLVENT DES ELECTROLYTE; MASS-TRANSFER; CARBON FELT; CATHODE MATERIAL; ENERGY-STORAGE; PERFORMANCE; FIELD; CONVECTION; PRINCIPLE;
D O I
10.1016/j.jpowsour.2019.227159
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Enhancing the mass transport from the flow field side to the membrane side without sacrificing the active surface area is a critical strategy for the design of electrodes in flow-field structured vanadium redox flow batteries (VRFBs). In this work, we design and prepare a novel porous electrode with a gradient distribution in pores, enabling a gradual decrease in permeability but an increase in active surface areas from the flow field side to the membrane side. This design not only increases the electrode utilization due to the enhanced mass transport near the flow field side, but also avoids the loss of active surface area near the membrane side. Numerical modeling results show that compared to the conventional electrode design, the gradient electrode design can promote the uniform distribution of local reaction current density and overpotential, leading to a lower charge voltage and higher discharge voltage. Experimental results show that at the current density of 240 mA cm(-2), the battery with the gradient electrode design delivers a 69% higher discharge capacity than that with the conventional electrode design, demonstrating the superiority of the gradient electrode design strategy.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Dramatic performance gains in vanadium redox flow batteries through modified cell architecture [J].
Aaron, D. S. ;
Liu, Q. ;
Tang, Z. ;
Grim, G. M. ;
Papandrew, A. B. ;
Turhan, A. ;
Zawodzinski, T. A. ;
Mench, M. M. .
JOURNAL OF POWER SOURCES, 2012, 206 :450-453
[2]   Polarization curve analysis of all-vanadium redox flow batteries [J].
Aaron, Doug ;
Tang, Zhijiang ;
Papandrew, Alexander B. ;
Zawodzinski, Thomas A. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2011, 41 (10) :1175-1182
[3]   BEHAVIOR OF A CARBON FELT FLOW BY ELECTRODES .1. MASS-TRANSFER CHARACTERISTICS [J].
CARTA, R ;
PALMAS, S ;
POLCARO, AM ;
TOLA, G .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1991, 21 (09) :793-798
[4]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[5]   Parametric analysis of a hybrid solar concentrating photovoltaic/concentrating solar power (CPV/CSP) system [J].
Han Xue ;
Zhao Guankun ;
Xu Chao ;
Ju Xing ;
Du Xiaoze ;
Yang Yongping .
APPLIED ENERGY, 2017, 189 :520-533
[6]   A uniformly distributed bismuth nanoparticle-modified carbon cloth electrode for vanadium redox flow batteries [J].
Jiang, H. R. ;
Zeng, Y. K. ;
Wu, M. C. ;
Shyy, W. ;
Zhao, T. S. .
APPLIED ENERGY, 2019, 240 :226-235
[7]   A room-temperature activated graphite felt as the cost-effective, highly active and stable electrode for vanadium redox flow batteries [J].
Jiang, H. R. ;
Shyy, W. ;
Ren, Y. X. ;
Zhang, R. H. ;
Zhao, T. S. .
APPLIED ENERGY, 2019, 233 :544-553
[8]   A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries [J].
Jiang, H. R. ;
Shyy, W. ;
Wu, M. C. ;
Zhang, R. H. ;
Zhao, T. S. .
APPLIED ENERGY, 2019, 233 :105-113
[9]   Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries [J].
Jiang, H. R. ;
Wu, M. C. ;
Ren, Y. X. ;
Shyy, W. ;
Zhao, T. S. .
APPLIED ENERGY, 2018, 213 :366-374
[10]   Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries [J].
Jiang, H. R. ;
Shyy, W. ;
Wu, M. C. ;
Wei, L. ;
Zhao, T. S. .
JOURNAL OF POWER SOURCES, 2017, 365 :34-42