Approximate Bayes learning of stochastic differential equations

被引:23
作者
Batz, Philipp [1 ]
Ruttor, Andreas [1 ]
Opper, Manfred [1 ]
机构
[1] TU Berlin, Fak MAR 4 4 2, Marchstr 23, D-10587 Berlin, Germany
关键词
NONPARAMETRIC-ESTIMATION; MAXIMUM-LIKELIHOOD; INFINITE HMMS; CLIMATE;
D O I
10.1103/PhysRevE.98.022109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a nonparametnc approach for estimating drift and diffusion functions in systems of stochastic differential equations from observations of the state vector. Gaussian processes are used as flexible models for these functions, and estimates are calculated directly from dense data sets using Gaussian process regression. We develop an approximate expectation maximization algorithm to deal with the unobserved, latent dynamics between sparse observations. The posterior over states is approximated by apiecewise linearized process of the Ornstein-Uhlenbeck type and the maximum a posteriori estimation of the drift is facilitated by a sparse Gaussian process approximation.
引用
收藏
页数:19
相关论文
共 37 条
[1]   High-resolution record of Northern Hemisphere climate extending into the last interglacial period [J].
Andersen, KK ;
Azuma, N ;
Barnola, JM ;
Bigler, M ;
Biscaye, P ;
Caillon, N ;
Chappellaz, J ;
Clausen, HB ;
DahlJensen, D ;
Fischer, H ;
Flückiger, J ;
Fritzsche, D ;
Fujii, Y ;
Goto-Azuma, K ;
Gronvold, K ;
Gundestrup, NS ;
Hansson, M ;
Huber, C ;
Hvidberg, CS ;
Johnsen, SJ ;
Jonsell, U ;
Jouzel, J ;
Kipfstuhl, S ;
Landais, A ;
Leuenberger, M ;
Lorrain, R ;
Masson-Delmotte, V ;
Miller, H ;
Motoyama, H ;
Narita, H ;
Popp, T ;
Rasmussen, SO ;
Raynaud, D ;
Rothlisberger, R ;
Ruth, U ;
Samyn, D ;
Schwander, J ;
Shoji, H ;
Siggard-Andersen, ML ;
Steffensen, JP ;
Stocker, T ;
Sveinbjörnsdóttir, AE ;
Svensson, A ;
Takata, M ;
Tison, JL ;
Thorsteinsson, T ;
Watanabe, O ;
Wilhelms, F ;
White, JWC .
NATURE, 2004, 431 (7005) :147-151
[2]  
[Anonymous], 2004, KERNEL METHODS PATTE
[3]  
Archambeau C., 2008, Roweis SAdvances in neural information processing systems, V20, P17
[4]   Fully nonparametric estimation of scalar diffusion models [J].
Bandi, FM ;
Phillips, PCB .
ECONOMETRICA, 2003, 71 (01) :241-283
[5]   Variational estimation of the drift for stochastic differential equations from the empirical density [J].
Batz, Philipp ;
Ruttor, Andreas ;
Opper, Manfred .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[6]  
Csató L, 2002, ADV NEUR IN, V14, P657
[7]   EVIDENCE FOR GENERAL INSTABILITY OF PAST CLIMATE FROM A 250-KYR ICE-CORE RECORD [J].
DANSGAARD, W ;
JOHNSEN, SJ ;
CLAUSEN, HB ;
DAHLJENSEN, D ;
GUNDESTRUP, NS ;
HAMMER, CU ;
HVIDBERG, CS ;
STEFFENSEN, JP ;
SVEINBJORNSDOTTIR, AE ;
JOUZEL, J ;
BOND, G .
NATURE, 1993, 364 (6434) :218-220
[8]   Gaussian process dynamic programming [J].
Deisenroth, Marc Peter ;
Rasmussen, Carl Edward ;
Peters, Jan .
NEUROCOMPUTING, 2009, 72 (7-9) :1508-1524
[9]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[10]   Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes [J].
Durham, GB ;
Gallant, AR .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2002, 20 (03) :297-316