Generalized Batchelor functions of isotropic turbulence

被引:2
作者
Gravanis, Elias [1 ]
Akylas, Evangelos [1 ]
机构
[1] Cyprus Univ Technol, Dept Civil Engn & Geomat, CY-3603 Limassol, Cyprus
关键词
DIRECT NUMERICAL-SIMULATION; ENERGY-SPECTRUM; INTERMITTENCY; STATISTICS; RANGE;
D O I
10.1063/1.4905326
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We generalize Batchelor's parameterization of the autocorrelation functions of isotropic turbulence in a form involving a product expansion with multiple small scales. The richer small scale structure acquired this way, compared to the usual Batchelor function, is necessary so that the associated energy spectrum approximate well actual spectra in the universal equilibrium range. We propose that the generalized function provides an approximation of arbitrary accuracy for actual spectra of isotropic turbulence over the universal equilibrium range. The degree of accuracy depends on the number of higher moments which are determinable and it is reflected in the number of small scales involved. The energy spectrum of the generalized function is derived, and for the case of two small scales is compared with data from high-resolution direct numerical simulations. We show that the compensated spectra (which illustrate the bottleneck effect) and dissipation spectra are encapsulated excellently, in accordance with our proposal. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 21 条
  • [1] Second-order temperature and velocity structure functions: Reynolds number dependence
    Antonia, RA
    Zhou, T
    Xu, G
    [J]. PHYSICS OF FLUIDS, 2000, 12 (06) : 1509 - 1517
  • [2] PRESSURE FLUCTUATIONS IN ISOTROPIC TURBULENCE
    BATCHELOR, GK
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1951, 47 (02): : 359 - 374
  • [3] VELOCITY PROBABILITY DENSITY-FUNCTIONS OF HIGH REYNOLDS-NUMBER TURBULENCE
    CASTAING, B
    GAGNE, Y
    HOPFINGER, EJ
    [J]. PHYSICA D, 1990, 46 (02): : 177 - 200
  • [4] Unified multifractal description of velocity increments statistics in turbulence:: Intermittency and skewness
    Chevillard, L.
    Castaing, B.
    Leveque, E.
    Arneodo, A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (01) : 77 - 82
  • [5] The bottleneck effect and the Kolmogorov constant in isotropic turbulence
    Donzis, D. A.
    Sreenivasan, K. R.
    [J]. JOURNAL OF FLUID MECHANICS, 2010, 657 : 171 - 188
  • [6] Application of extended self-similarity in turbulence
    Grossmann, S
    Lohse, D
    Reeh, A
    [J]. PHYSICAL REVIEW E, 1997, 56 (05): : 5473 - 5478
  • [7] Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics
    Ishihara, T.
    Kaneda, Y.
    Yokokawa, M.
    Itakura, K.
    Uno, A.
    [J]. JOURNAL OF FLUID MECHANICS, 2007, 592 : 335 - 366
  • [8] Energy spectrum in the near dissipation range of high resolution direct numerical simulation of turbulence
    Ishihara, T
    Kaneda, Y
    Yokokawa, M
    Itakura, K
    Uno, A
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (05) : 1464 - 1471
  • [9] Study of High-Reynolds Number Isotropic Turbulence by Direct Numerical Simulation
    Ishihara, Takashi
    Gotoh, Toshiyuki
    Kaneda, Yukio
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2009, 41 : 165 - 180
  • [10] THE LOCAL-STRUCTURE OF TURBULENCE IN INCOMPRESSIBLE VISCOUS-FLUID FOR VERY LARGE REYNOLDS-NUMBERS
    KOLMOGOROV, AN
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1890): : 9 - 13