On the potential automorphy of certain odd-dimensional Galois representations

被引:2
作者
Barnet-Lamb, Thomas [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Galois representation; potential automorphy; potential modularity; Dwork hypersurface; SUBGROUPS;
D O I
10.1112/S0010437X09004527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper, the potential automorphy of certain Galois representations to GL(n) for n even was established, following the work of Harris, Shepherd-Barron and Taylor and using the lifting theorems of Clozel, Harris and Taylor. in this paper, we extend those results to 71, = 3 and n = 5, and conditionally to all other odd n. The key additional tools necessary are results which give the automorphy or potential automorphy of symmetric powers of elliptic curves, most notably those of Gelbert, Jacquet, Kim, Shahidi and Harris.
引用
收藏
页码:607 / 620
页数:14
相关论文
共 14 条
  • [1] CLOZEL L, 2005, AUTOMORPHY SOME ADIC
  • [2] Ekedahl T., 1990, Seminaire de Theorie des Nombres, V91, P241
  • [3] GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471
  • [4] HARRIS M, 2007, PROGR MATH IN PRESS
  • [5] Harris M., 2001, The Geometry and Cohomology of Some Simple Shimura Varieties. Annals of Mathematics Studies 151
  • [6] KATZ NM, 2007, PROGR MATH IN PRESS
  • [7] Kim HH, 2002, DUKE MATH J, V112, P177
  • [8] Functoriality for the exterior square of GL4 and the symmetric fourth of GL2
    Kim, HH
    Ramakrishnan, D
    Sarnak, P
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) : 139 - 183
  • [9] MATTHEWS CR, 1984, P LOND MATH SOC, V48, P514
  • [10] ON SUBGROUPS OF GLN(FP)
    NORI, MV
    [J]. INVENTIONES MATHEMATICAE, 1987, 88 (02) : 257 - 275