Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution

被引:366
作者
Li, Bin [1 ]
Zhang, Wen [1 ,2 ]
Guo, Chuang [1 ]
Xu, Hao [1 ,2 ]
Li, Longfei [3 ]
Fang, Minghao [3 ]
Hu, Yinlei [4 ]
Zhang, Xinye [3 ]
Yao, Xinfeng [1 ]
Tang, Meifang [1 ]
Liu, Ke [1 ]
Zhao, Xuetong [5 ]
Lin, Jun [1 ,2 ]
Cheng, Linzhao [3 ]
Chen, Falai [4 ]
Xue, Tian [3 ]
Qu, Kun [1 ,2 ,6 ]
机构
[1] Univ Sci & Technol China, Affiliated Hosp 1, Sch Basic Med Sci, Dept Oncol,USTC,Div Life Sci & Med, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Univ Sci & Technol China, Div Life Sci & Med, Hefei, Peoples R China
[4] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
[5] Chinese Acad Sci, Inst Microbiol, CAS Key Lab Microbial Physiol & Metab Engn, Beijing, Peoples R China
[6] Univ Sci & Technol China, CAS Ctr Excellence Mol Cell Sci, CAS Key Lab Innate Immun & Chron Dis, Hefei, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
GENOME-WIDE EXPRESSION; RNA-SEQ; GENE-EXPRESSION; ATLAS; VISUALIZATION;
D O I
10.1038/s41592-022-01480-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data with single-cell RNA-seq data to predict the spatial distribution of undetected transcripts and/or perform cell type deconvolution of spots in histological sections. However, to date, no independent studies have comparatively analyzed these integration methods to benchmark their performance. Here we present benchmarking of 16 integration methods using 45 paired datasets (comprising both spatial transcriptomics and scRNA-seq data) and 32 simulated datasets. We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. We provide a benchmark pipeline to help researchers select optimal integration methods to process their datasets. This work presents a comprehensive benchmarking analysis of computational methods that integrates spatial and single-cell transcriptomics data for transcript distribution prediction and cell type deconvolution.
引用
收藏
页码:662 / +
页数:28
相关论文
共 50 条
[31]   Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease [J].
Piwecka, Monika ;
Rajewsky, Nikolaus ;
Rybak-Wolf, Agnieszka .
NATURE REVIEWS NEUROLOGY, 2023, 19 (06) :346-362
[32]   Single-cell and spatial transcriptomics: Advances in heart development and disease applications [J].
Long, Xianglin ;
Yuan, Xin ;
Du, Jianlin .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 :2717-2731
[33]   Recovering single-cell expression profiles from spatial transcriptomics with scResolve [J].
Chen, Hao ;
Lee, Young Je ;
Ovando-Ricardez, Jose A. ;
Rosas, Lorena ;
Rojas, Mauricio ;
Mora, Ana L. ;
Bar-Joseph, Ziv ;
Lugo-Martinez, Jose .
CELL REPORTS METHODS, 2024, 4 (10)
[34]   Single-Cell Transcriptomics Applied in Plants [J].
Sun, Yanyan ;
Sun, Jian ;
Lin, Chunjing ;
Zhang, Jingyong ;
Yan, Hao ;
Guan, Zheyun ;
Zhang, Chunbao .
CELLS, 2024, 13 (18)
[35]   Neural cell diversity in the light of single-cell transcriptomics [J].
Fernandez-Moya, Sandra Maria ;
Ganesh, Akshay Jaya ;
Plass, Mireya .
TRANSCRIPTION-AUSTIN, 2023, 14 (3-5) :158-176
[36]   Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics [J].
Lin, Weiqiang ;
Li, Yisu ;
Qiu, Chuan ;
Zou, Binghao ;
Gong, Yun ;
Zhang, Xiao ;
Tian, Di ;
Sherman, William ;
Sanchez, Fernando ;
Wu, Di ;
Su, Kuan-Jui ;
Xiao, Xinyi ;
Luo, Zhe ;
Tian, Qing ;
Chen, Yiping ;
Shen, Hui ;
Deng, Hongwen .
NUCLEIC ACIDS RESEARCH, 2025, 53 (02)
[37]   Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and Analysis [J].
Adil, Asif ;
Kumar, Vijay ;
Jan, Arif Tasleem ;
Asger, Mohammed .
FRONTIERS IN NEUROSCIENCE, 2021, 15
[38]   Benchmarking cross-species single-cell RNA-seq data integration methods: towards a cell type tree of life [J].
Zhong, Huawen ;
Han, Wenkai ;
Gomez-Cabrero, David ;
Tegner, Jesper ;
Gao, Xin ;
Cui, Guoxin ;
Aranda, Manuel .
NUCLEIC ACIDS RESEARCH, 2025, 53 (01)
[39]   Single-cell spatial explorer: easy exploration of spatial and multimodal transcriptomics [J].
Frédéric Pont ;
Juan Pablo Cerapio ;
Pauline Gravelle ;
Laetitia Ligat ;
Carine Valle ;
Emeline Sarot ;
Marion Perrier ;
Frédéric Lopez ;
Camille Laurent ;
Jean Jacques Fournié ;
Marie Tosolini .
BMC Bioinformatics, 24
[40]   Advances in the Application of Single-Cell Transcriptomics in Plant Systems and [J].
Islam, Torikul ;
Liu, Yang ;
Hassan, Mahmudul ;
Abraham, Paul E. ;
Merlet, Jean ;
Townsend, Alice ;
Buell, C. Robin ;
Jacobson, Daniel ;
Buell, C. Robin ;
Tuskan, Gerald A. ;
Yang, Xiaohan .
BIODESIGN RESEARCH, 2024, 6