Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution

被引:366
作者
Li, Bin [1 ]
Zhang, Wen [1 ,2 ]
Guo, Chuang [1 ]
Xu, Hao [1 ,2 ]
Li, Longfei [3 ]
Fang, Minghao [3 ]
Hu, Yinlei [4 ]
Zhang, Xinye [3 ]
Yao, Xinfeng [1 ]
Tang, Meifang [1 ]
Liu, Ke [1 ]
Zhao, Xuetong [5 ]
Lin, Jun [1 ,2 ]
Cheng, Linzhao [3 ]
Chen, Falai [4 ]
Xue, Tian [3 ]
Qu, Kun [1 ,2 ,6 ]
机构
[1] Univ Sci & Technol China, Affiliated Hosp 1, Sch Basic Med Sci, Dept Oncol,USTC,Div Life Sci & Med, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Univ Sci & Technol China, Div Life Sci & Med, Hefei, Peoples R China
[4] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
[5] Chinese Acad Sci, Inst Microbiol, CAS Key Lab Microbial Physiol & Metab Engn, Beijing, Peoples R China
[6] Univ Sci & Technol China, CAS Ctr Excellence Mol Cell Sci, CAS Key Lab Innate Immun & Chron Dis, Hefei, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
GENOME-WIDE EXPRESSION; RNA-SEQ; GENE-EXPRESSION; ATLAS; VISUALIZATION;
D O I
10.1038/s41592-022-01480-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data with single-cell RNA-seq data to predict the spatial distribution of undetected transcripts and/or perform cell type deconvolution of spots in histological sections. However, to date, no independent studies have comparatively analyzed these integration methods to benchmark their performance. Here we present benchmarking of 16 integration methods using 45 paired datasets (comprising both spatial transcriptomics and scRNA-seq data) and 32 simulated datasets. We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. We provide a benchmark pipeline to help researchers select optimal integration methods to process their datasets. This work presents a comprehensive benchmarking analysis of computational methods that integrates spatial and single-cell transcriptomics data for transcript distribution prediction and cell type deconvolution.
引用
收藏
页码:662 / +
页数:28
相关论文
共 50 条
  • [21] A new era for plant science: spatial single-cell transcriptomics
    Giacomello, Stefania
    CURRENT OPINION IN PLANT BIOLOGY, 2021, 60
  • [22] Spatially informed cell-type deconvolution for spatial transcriptomics
    Ma, Ying
    Zhou, Xiang
    NATURE BIOTECHNOLOGY, 2022, 40 (09) : 1349 - +
  • [23] Single-cell transcriptomics: a novel precision medicine technique in nephrology
    Kim, Jisoo
    Park, Jihwan
    KOREAN JOURNAL OF INTERNAL MEDICINE, 2021, 36 (03) : 479 - 490
  • [24] Computational methods for trajectory inference from single-cell transcriptomics
    Cannoodt, Robrecht
    Saelens, Wouter
    Saeys, Yvan
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 (11) : 2496 - 2506
  • [25] Benchmarking clustering, alignment, and integration methods for spatial transcriptomics
    Hu, Yunfei
    Xie, Manfei
    Li, Yikang
    Rao, Mingxing
    Shen, Wenjun
    Luo, Can
    Qin, Haoran
    Baek, Jihoon
    Zhou, Xin Maizie
    GENOME BIOLOGY, 2024, 25 (01):
  • [26] Embryo-scale, single-cell spatial transcriptomics
    Srivatsan, Sanjay R.
    Regier, Mary C.
    Barkan, Eliza
    Franks, Jennifer M.
    Packer, Jonathan S.
    Grosjean, Parker
    Duran, Madeleine
    Saxton, Sarah
    Ladd, Jon J.
    Spielmann, Malte
    Lois, Carlos
    Lampe, Paul D.
    Shendure, Jay
    Stevens, Kelly R.
    Trapnell, Cole
    SCIENCE, 2021, 373 (6550) : 111 - +
  • [27] Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids
    van den Brink, Susanne C.
    Alemany, Anna
    van Batenburg, Vincent
    Moris, Naomi
    Blotenburg, Marloes
    Vivie, Judith
    Baillie-Johnson, Peter
    Nichols, Jennifer
    Sonnen, Katharina F.
    Martinez Arias, Alfonso
    van Oudenaarden, Alexander
    NATURE, 2020, 582 (7812) : 405 - +
  • [28] STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing
    Sun, Dongqing
    Liu, Zhaoyang
    Li, Taiwen
    Wu, Qiu
    Wang, Chenfei
    NUCLEIC ACIDS RESEARCH, 2022,
  • [29] STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing
    Sun, Dongqing
    Liu, Zhaoyang
    Li, Taiwen
    Wu, Qiu
    Wang, Chenfei
    NUCLEIC ACIDS RESEARCH, 2022, 50 (07) : E42
  • [30] Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease
    Piwecka, Monika
    Rajewsky, Nikolaus
    Rybak-Wolf, Agnieszka
    NATURE REVIEWS NEUROLOGY, 2023, 19 (06) : 346 - 362