Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution

被引:407
作者
Li, Bin [1 ]
Zhang, Wen [1 ,2 ]
Guo, Chuang [1 ]
Xu, Hao [1 ,2 ]
Li, Longfei [3 ]
Fang, Minghao [3 ]
Hu, Yinlei [4 ]
Zhang, Xinye [3 ]
Yao, Xinfeng [1 ]
Tang, Meifang [1 ]
Liu, Ke [1 ]
Zhao, Xuetong [5 ]
Lin, Jun [1 ,2 ]
Cheng, Linzhao [3 ]
Chen, Falai [4 ]
Xue, Tian [3 ]
Qu, Kun [1 ,2 ,6 ]
机构
[1] Univ Sci & Technol China, Affiliated Hosp 1, Sch Basic Med Sci, Dept Oncol,USTC,Div Life Sci & Med, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Univ Sci & Technol China, Div Life Sci & Med, Hefei, Peoples R China
[4] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
[5] Chinese Acad Sci, Inst Microbiol, CAS Key Lab Microbial Physiol & Metab Engn, Beijing, Peoples R China
[6] Univ Sci & Technol China, CAS Ctr Excellence Mol Cell Sci, CAS Key Lab Innate Immun & Chron Dis, Hefei, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
GENOME-WIDE EXPRESSION; RNA-SEQ; GENE-EXPRESSION; ATLAS; VISUALIZATION;
D O I
10.1038/s41592-022-01480-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data with single-cell RNA-seq data to predict the spatial distribution of undetected transcripts and/or perform cell type deconvolution of spots in histological sections. However, to date, no independent studies have comparatively analyzed these integration methods to benchmark their performance. Here we present benchmarking of 16 integration methods using 45 paired datasets (comprising both spatial transcriptomics and scRNA-seq data) and 32 simulated datasets. We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. We provide a benchmark pipeline to help researchers select optimal integration methods to process their datasets. This work presents a comprehensive benchmarking analysis of computational methods that integrates spatial and single-cell transcriptomics data for transcript distribution prediction and cell type deconvolution.
引用
收藏
页码:662 / +
页数:28
相关论文
共 80 条
[41]   Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets [J].
Macosko, Evan Z. ;
Basu, Anindita ;
Satija, Rahul ;
Nemesh, James ;
Shekhar, Karthik ;
Goldman, Melissa ;
Tirosh, Itay ;
Bialas, Allison R. ;
Kamitaki, Nolan ;
Martersteck, Emily M. ;
Trombetta, John J. ;
Weitz, David A. ;
Sanes, Joshua R. ;
Shalek, Alex K. ;
Regev, Aviv ;
McCarroll, Steven A. .
CELL, 2015, 161 (05) :1202-1214
[42]   Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex [J].
Maynard, Kristen R. ;
Collado-Torres, Leonardo ;
Weber, Lukas M. ;
Uytingco, Cedric ;
Barry, Brianna K. ;
Williams, Stephen R. ;
Catallini, Joseph L., II ;
Tran, Matthew N. ;
Besich, Zachary ;
Tippani, Madhavi ;
Chew, Jennifer ;
Yin, Yifeng ;
Kleinman, Joel E. ;
Hyde, Thomas M. ;
Rao, Nikhil ;
Hicks, Stephanie C. ;
Martinowich, Keri ;
Jaffe, Andrew E. .
NATURE NEUROSCIENCE, 2021, 24 (03) :425-436
[43]   Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R [J].
McCarthy, Davis J. ;
Campbell, Kieran R. ;
Lun, Aaron T. L. ;
Wills, Quin F. .
BIOINFORMATICS, 2017, 33 (08) :1179-1186
[44]   Vitamin D sufficiency enhances differentiation of patient-derived prostate epithelial organoids (vol 24, 101974, 2021) [J].
McCray, Tara ;
Pacheco, Julian V. ;
Loitz, Candice C. ;
Garcia, Jason ;
Baumann, Bethany ;
Schlicht, Michael J. ;
Valyi-Nagy, Klara ;
Abern, Michael R. ;
Nonn, Larisa .
ISCIENCE, 2021, 24 (06)
[45]   Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration [J].
McKellar, David W. ;
Walter, Lauren D. ;
Song, Leo T. ;
Mantri, Madhav ;
Wang, Michael F. Z. ;
De Vlaminck, Iwijn ;
Cosgrove, Benjamin D. .
COMMUNICATIONS BIOLOGY, 2021, 4 (01)
[46]   Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region [J].
Moffitt, Jeffrey R. ;
Bambah-Mukku, Dhananjay ;
Eichhorn, Stephen W. ;
Vaughn, Eric ;
Shekhar, Karthik ;
Perez, Julio D. ;
Rubinstein, Nimrod D. ;
Hao, Junjie ;
Regev, Aviv ;
Dulac, Catherine ;
Zhuang, Xiaowei .
SCIENCE, 2018, 362 (6416) :792-+
[47]   Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas [J].
Moncada, Reuben ;
Barkley, Dalia ;
Wagner, Florian ;
Chiodin, Marta ;
Devlin, Joseph C. ;
Baron, Maayan ;
Hajdu, Cristina H. ;
Simeone, Diane M. ;
Yanai, Itai .
NATURE BIOTECHNOLOGY, 2020, 38 (03) :333-+
[48]   PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors [J].
Mourragui, Soufiane ;
Loog, Marco ;
van de Wiel, Mark A. ;
Reinders, Marcel J. T. ;
Wessels, Lodewyk F. A. .
BIOINFORMATICS, 2019, 35 (14) :I510-I519
[49]   Spatial Transcriptomics Reveals Genes Associated with Dysregulated Mitochondrial Functions and Stress Signaling in Alzheimer Disease [J].
Navarro, Jose Fernandez ;
Croteau, Deborah L. ;
Jurek, Aleksandra ;
Andrusivova, Zaneta ;
Yang, Beimeng ;
Wang, Yue ;
Ogedegbe, Benjamin ;
Riaz, Tahira ;
Stoen, Mari ;
Desler, Claus ;
Rasmussen, Lene Juel ;
Tonjum, Tone ;
Galas, Marie-Christine ;
Lundeberg, Joakim ;
Bohr, Vilhelm A. .
ISCIENCE, 2020, 23 (10)
[50]   Gene expression cartography [J].
Nitzan, Mor ;
Karaiskos, Nikos ;
Friedman, Nir ;
Rajewsky, Nikolaus .
NATURE, 2019, 576 (7785) :132-+