Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution

被引:366
|
作者
Li, Bin [1 ]
Zhang, Wen [1 ,2 ]
Guo, Chuang [1 ]
Xu, Hao [1 ,2 ]
Li, Longfei [3 ]
Fang, Minghao [3 ]
Hu, Yinlei [4 ]
Zhang, Xinye [3 ]
Yao, Xinfeng [1 ]
Tang, Meifang [1 ]
Liu, Ke [1 ]
Zhao, Xuetong [5 ]
Lin, Jun [1 ,2 ]
Cheng, Linzhao [3 ]
Chen, Falai [4 ]
Xue, Tian [3 ]
Qu, Kun [1 ,2 ,6 ]
机构
[1] Univ Sci & Technol China, Affiliated Hosp 1, Sch Basic Med Sci, Dept Oncol,USTC,Div Life Sci & Med, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Univ Sci & Technol China, Div Life Sci & Med, Hefei, Peoples R China
[4] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
[5] Chinese Acad Sci, Inst Microbiol, CAS Key Lab Microbial Physiol & Metab Engn, Beijing, Peoples R China
[6] Univ Sci & Technol China, CAS Ctr Excellence Mol Cell Sci, CAS Key Lab Innate Immun & Chron Dis, Hefei, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
GENOME-WIDE EXPRESSION; RNA-SEQ; GENE-EXPRESSION; ATLAS; VISUALIZATION;
D O I
10.1038/s41592-022-01480-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data with single-cell RNA-seq data to predict the spatial distribution of undetected transcripts and/or perform cell type deconvolution of spots in histological sections. However, to date, no independent studies have comparatively analyzed these integration methods to benchmark their performance. Here we present benchmarking of 16 integration methods using 45 paired datasets (comprising both spatial transcriptomics and scRNA-seq data) and 32 simulated datasets. We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. We provide a benchmark pipeline to help researchers select optimal integration methods to process their datasets. This work presents a comprehensive benchmarking analysis of computational methods that integrates spatial and single-cell transcriptomics data for transcript distribution prediction and cell type deconvolution.
引用
收藏
页码:662 / +
页数:28
相关论文
共 50 条
  • [1] Integration of Computational Analysis and Spatial Transcriptomics in Single-cell Studies
    Wang, Ran
    Peng, Guangdun
    Tam, Patrick P. L.
    Jing, Naihe
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 13 - 23
  • [2] Single-cell and spatial transcriptomics in endocrine research
    Matsumoto, Ryusaku
    Yamamoto, Takuya
    ENDOCRINE JOURNAL, 2024, 71 (02) : 101 - 118
  • [3] Encoding Method of Single-cell Spatial Transcriptomics Sequencing
    Zhou, Ying
    Jia, Erteng
    Pan, Min
    Zhao, Xiangwei
    Ge, Qinyu
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2020, 16 (14): : 2663 - 2674
  • [4] Single-cell spatial transcriptomics in cardiovascular development, disease, and medicine
    Han, Songjie
    Xu, Qianqian
    Du, Yawen
    Tang, Chuwei
    Cui, Herong
    Xia, Xiaofeng
    Zheng, Rui
    Sun, Yang
    Shang, Hongcai
    GENES & DISEASES, 2024, 11 (06)
  • [5] Single-Cell RNA Sequencing with Spatial Transcriptomics of Cancer Tissues
    Ahmed, Rashid
    Zaman, Tariq
    Chowdhury, Farhan
    Mraiche, Fatima
    Tariq, Muhammad
    Ahmad, Irfan S.
    Hasan, Anwarul
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (06)
  • [6] Single-cell transcriptomics for the assessment of cardiac disease
    Miranda, Antonio M. A.
    Janbandhu, Vaibhao
    Maatz, Henrike
    Kanemaru, Kazumasa
    Cranley, James
    Teichmann, Sarah A.
    Huebner, Norbert
    Schneider, Michael D.
    Harvey, Richard P.
    Noseda, Michela
    NATURE REVIEWS CARDIOLOGY, 2023, 20 (05) : 289 - 308
  • [7] Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
    Andersson, Alma
    Bergenstrahle, Joseph
    Asp, Michaela
    Bergenstrahle, Ludvig
    Jurek, Aleksandra
    Fernandez Navarro, Jose
    Lundeberg, Joakim
    COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [8] Spatial transcriptomics-aided localization for single-cell transcriptomics with STALocator
    Li, Shang
    Shen, Qunlun
    Zhang, Shihua
    CELL SYSTEMS, 2025, 16 (02)
  • [9] SPASCER: spatial transcriptomics annotation at single-cell resolution
    Fan, Zhiwei
    Luo, Yangyang
    Lu, Huifen
    Wang, Tiangang
    Feng, YuZhou
    Zhao, Weiling
    Kim, Pora
    Zhou, Xiaobo
    NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) : D1138 - D1149
  • [10] Liver in infections: a single-cell and spatial transcriptomics perspective
    Zou, Ju
    Li, Jie
    Zhong, Xiao
    Tang, Daolin
    Fan, Xuegong
    Chen, Ruochan
    JOURNAL OF BIOMEDICAL SCIENCE, 2023, 30 (01)