An Image Processing Framework for Breast Cancer Detection Using Multi-View Mammographic Images

被引:4
作者
Hikmah, Nada Fitrieyatul [1 ]
Sardjono, Tri Arief [1 ]
Mertiana, Windy Deftia [1 ]
Firdi, Nabila Puspita [1 ]
Purwitasari, Diana [2 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Biomed Engn, Surabaya, Indonesia
[2] Inst Teknol Sepuluh Nopember, Dept Informat Engn, Surabaya, Indonesia
关键词
Breast Cancer; CC view; Entropy; Feature Extraction; Mammography; MLO view;
D O I
10.24003/emitter.v10i1.695
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Breast cancer is the leading cause of cancer death in women. The early phase of breast cancer is asymptomatic, without any signs or symptoms. The earlier breast cancer can be detected, the greater chance of cure. Early detection using screening mammography is a common step for detecting the presence of breast cancer. Many studies of computer-based using breast cancer detection have been done previously. However, the detection process for craniocaudal (CC) view and mediolateral oblique (MLO) view angles were done separately. This study aims to improve the detection performance for breast cancer diagnosis with CC and MLO view analysis. An image processing framework for multi-view screening was used to improve the diagnostic results rather than single-view. Image enhancement, segmentation, and feature extraction are all part of the framework provided in this study. The stages of image quality improvement are very important because the contrast of mammographic images is relatively low, so it often overlaps between cancer tissue and normal tissue. Texture-based segmentation utilizing the first-order local entropy approach was used to segment the images. The value of the radius and the region of probable cancer were calculated using the findings of feature extraction. The results of this study show the accuracy of breast cancer detection using CC and MLO views were 88.0% and 80.5% respectively. The proposed framework was useful in the diagnosis of breast cancer, that the detection results and features help clinicians in making treatment.
引用
收藏
页码:136 / 152
页数:17
相关论文
共 28 条
[1]   Mammographic image enhancement using indirect contrast enhancement techniques - A comparative study [J].
Akila, K. ;
Jayashree, L. S. ;
Vasuki, A. .
GRAPH ALGORITHMS, HIGH PERFORMANCE IMPLEMENTATIONS AND ITS APPLICATIONS (ICGHIA 2014), 2015, 47 :255-261
[2]  
Al-masni MA, 2017, IEEE ENG MED BIO, P1230, DOI 10.1109/EMBC.2017.8037053
[3]  
Arafah A. B. R., 2017, INDONESIAN J PUBLIC, V12, P143
[4]  
Bassett L. W., 2011, BREAST IMAGING, V1, P25
[5]   Preprocessing of Breast Cancer Images to Create Datasets for Deep-CNN [J].
Beeravolu, Abhijith Reddy ;
Azam, Sami ;
Jonkman, Mirjam ;
Shanmugam, Bharanidharan ;
Kannoorpatti, Krishnan ;
Anwar, Adnan .
IEEE ACCESS, 2021, 9 :33438-33463
[6]  
Berg W. A., 2019, DIAGNOSTIC IMAGING B, V3, P4
[7]  
Bertsimas D., 1997, Introduction to Linear Optimization
[8]  
Bin Sama A.S.A., 2017, INT J ENG APPLIES CO, V2, P267
[9]   Breast cancer detection in mammography using spatial diversity, geostatistics, and concave geometry [J].
Braz Junior, Geraldo ;
da Rocha, Simara V. ;
de Almeida, Joao D. S. ;
de Paiva, Anselmo C. ;
Silva, Aristofanes C. ;
Gattass, Marcelo .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (10) :13005-13031
[10]   CLAHE Parameters Effects on the Quantitative and Visual Assessment of Dense Breast Mammograms [J].
Carneiro, P. ;
Debs, C. ;
Andrade, A. ;
Patrocinio, A. .
IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (05) :851-857