A positive fraction Erdos-Szekeres theorem

被引:44
作者
Barany, I
Valtr, P
机构
[1] Hungarian Acad Sci, Inst Math, H-1364 Budapest, Hungary
[2] Charles Univ, Dept Appl Math, CR-11800 Prague 1, Czech Republic
关键词
D O I
10.1007/PL00009350
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a fractional version of the Erdos-Szekeres theorem: for any k there is a constant c(k) > 0 such that any sufficiently large finite set X subset of R-2 contains k subsets Y-1, ..., Y-k, each of size greater than or equal to c(k)\X\, such that every set {y(1), ..., y(k)} with y(i) is an element of Y-i is in convex position. The main tool is a lemma stating that any finite set X subset of R-d contains "large" subsets Y-1, ..., Y-k such that all sets {y(1), ..., y(k)} with y(i) is an element of Y-i have the same geometric (order) type, We also prove several related results (e.g., the positive fraction Radon theorem, the positive fraction Tverberg theorem).
引用
收藏
页码:335 / 342
页数:8
相关论文
共 16 条
  • [1] Alon N., 1992, COMB PROBAB COMPUT, V1, P189, DOI DOI 10.1017/S0963548300000225
  • [2] ON THE NUMBER OF HALVING PLANES
    BARANY, I
    FUREDI, Z
    LOVASZ, L
    [J]. COMBINATORICA, 1990, 10 (02) : 175 - 183
  • [3] BARANY I, 1996, IN PRESS MATH OPER R
  • [4] Danzer Ludwig, 1963, P S PURE MATH, VVII, P101
  • [5] Erdos P., 1960, ANN U SCI BUDAP, V3-4, P53
  • [6] Erdos P., 1935, Compositio Math., V2, P463
  • [7] Goodman J.E., 1993, NEW TRENDS DISCRETE
  • [8] Goodman J.E., 1991, NEW TRENDS DISCRETE
  • [9] THE COMPLEXITY OF POINT CONFIGURATIONS
    GOODMAN, JE
    POLLACK, R
    [J]. DISCRETE APPLIED MATHEMATICS, 1991, 31 (02) : 167 - 180
  • [10] Komlos J, 1996, BOLYAI MATH STUD, V2, P295