One-pot preparation of Au-RGO/PDDA nanocomposites and their application for nitrite sensing

被引:86
作者
Jiao, Shoufeng [1 ,2 ,3 ]
Jin, Jing [1 ,2 ]
Wang, Lun [1 ,2 ]
机构
[1] Anhui Normal Univ, Anhui Key Lab Chemo Biosensing, Wuhu 241000, Peoples R China
[2] Anhui Normal Univ, Coll Chem & Mat Sci, Wuhu 241000, Peoples R China
[3] Huaibei Vocat & Tech Coll, Huaibei 235000, Peoples R China
关键词
Poly (diallydimethylammonium chloride) (PDDA); Nanocomposites; Electrocatalytic activity; Electrochemical determination; Sensors; GLASSY-CARBON ELECTRODE; REDUCED GRAPHENE OXIDE; GOLD NANOPARTICLES; DIRECT ELECTROCHEMISTRY; COMPOSITE FILM; SENSOR; NITRATE; CONSTRUCTION; DISPERSIONS; VOLTAMMETRY;
D O I
10.1016/j.snb.2014.11.020
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we demonstrate that Au-reduced graphene oxide/PDDA nanocomposites (Au-RGO/PDDA) can be rapidly synthesized through a facile, cost-effective, one-pot method with the use of poly (diallydimethylammonium chloride) (PDDA) as both reducing and stabilizing agents. The prepared AuRGO/ PDDA nanocomposites film endowed the modified electrode fast electron transfer rate and high electrocatalytic activity toward nitrite oxidation. Under the optimal conditions, the oxidation current increased linearly with increasing the concentration of nitrite in the range 0.05-8.5 mu M with the correlation coefficient of 0.9964 and the detection limit of 0.04 mu M at a ratio of signal to noise of 3 using differential pulse voltammograms (DPV). The presented sensor was also demonstrated for the determination of nitrite ion in lake water, meat and dairy products samples with satisfactory results. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 42
页数:7
相关论文
共 43 条
[1]   Synthesis, characterization and electroanalytical application of a new SiO2/SnO2 carbon ceramic electrode [J].
Arguello, Jacqueline ;
Magosso, Herica A. ;
Landers, Richard ;
Pimentel, Vinicius L. ;
Gushikem, Yoshitaka .
ELECTROCHIMICA ACTA, 2010, 56 (01) :340-345
[2]   Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes [J].
Brylev, Oleg ;
Sarrazin, Mathieu ;
Roue, Lionel ;
Belanger, Daniel .
ELECTROCHIMICA ACTA, 2007, 52 (21) :6237-6247
[3]  
Carpenter SR, 1998, ECOL APPL, V8, P559, DOI 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO
[4]  
2
[5]   One-step preparation and characterization of PDDA-protected gold nanoparticles [J].
Chen, HJ ;
Wang, YL ;
Wang, YZ ;
Dong, SJ ;
Wang, EK .
POLYMER, 2006, 47 (02) :763-766
[6]   Layer-by-layer construction of graphene/cobalt phthalocyanine composite film on activated GCE for application as a nitrite sensor [J].
Cui, Lili ;
Pu, Tao ;
Liu, Ying ;
He, Xingquan .
ELECTROCHIMICA ACTA, 2013, 88 :559-564
[7]   Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode [J].
Cui, Lin ;
Meng, Xiaomeng ;
Xu, Minrong ;
Shang, Kun ;
Ai, Shiyun ;
Liu, Yinping .
ELECTROCHIMICA ACTA, 2011, 56 (27) :9769-9774
[8]   Colorimetric Nitrite and Nitrate Detection with Gold Nanoparticle Probes and Kinetic End Points [J].
Daniel, Weston L. ;
Han, Min Su ;
Lee, Jae-Seung ;
Mirkin, Chad A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (18) :6362-+
[9]   Quantification of residual nitrite and nitrate in ham by reverse-phase high performance liquid chromatography/diode array detector [J].
Ferreira, I. M. P. L. V. O. ;
Silva, S. .
TALANTA, 2008, 74 (05) :1598-1602
[10]   Ultrasensitive and selective determination of trace amounts of nitrite ion with a novel fluorescence probe mono [6-N(2-carboxy-phenyl)]-β-cyclodextrin [J].
Gao, F ;
Zhang, L ;
Wang, L ;
She, SK ;
Zhu, CQ .
ANALYTICA CHIMICA ACTA, 2005, 533 (01) :25-29