Low regularity ill-posedness for non-strictly hyperbolic systems in three dimensions

被引:8
作者
An, Xinliang [1 ]
Chen, Haoyang [1 ]
Yin, Silu [2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore, Singapore
[2] Hangzhou Normal Univ, Dept Math, Hangzhou, Peoples R China
关键词
GLOBAL EXISTENCE; LOCAL EXISTENCE; WAVE-EQUATIONS; SHARP COUNTEREXAMPLE; SINGULARITIES; BLOWUP;
D O I
10.1063/5.0089521
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we survey a new approach combining algebraic and geometric ideas, with which we prove low regularity ill-posedness for quasilinear hyperbolic systems with non-strict hyperbolicity in three dimensions. These systems are also associated with multiple wave-speeds. Published under an exclusive license by AIP Publishing
引用
收藏
页数:16
相关论文
共 40 条
[1]   Global existence of nonlinear elastic waves [J].
Agemi, R .
INVENTIONES MATHEMATICAE, 2000, 142 (02) :225-250
[2]   Blowup of small data solutions for a quasilinear wave equation in two space dimensions [J].
Alinhac, S .
ANNALS OF MATHEMATICS, 1999, 149 (01) :97-127
[3]   Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions - II [J].
Alinhac, S .
ACTA MATHEMATICA, 1999, 182 (01) :1-23
[4]  
An X., 2020, ARXIV200303195
[5]  
An X., ARXIV211010647
[6]  
Buckmaster T., 2019, Communications on Pure and Applied Mathematics
[7]  
Buckmaster T., 2019, ARXIV190703784
[8]  
Christodoulou D., 2007, EMS MONOGRAPHS MATH
[9]  
Christodoulou D., 2014, SURVEYS MODERN MATH, V9, P583
[10]   On the formation of shocks of electromagnetic plane waves in non-linear crystals [J].
Christodoulou, Demetrios ;
Perez, Daniel Raoul .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)