EmotionTracker: A Mobile Real-time Facial Expression Tracking System with the Assistant of Public AI-as-a-Service

被引:1
作者
Liu, Xuncheng [1 ]
Wang, Jingyi [1 ]
Zhang, Weizhan [1 ]
Zheng, Qinghu [1 ]
Li, Xuanya [2 ]
机构
[1] Xi An Jiao Tong Univ, MOEKLINNS Lab, Sch Comp Sci & Technol, Xian, Peoples R China
[2] Baidu Inc, Xian, Peoples R China
来源
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA | 2020年
关键词
real-time mobile artificial intelligence application; AI-as-a-Service; facial expression tracking; task offloading;
D O I
10.1145/3394171.3414447
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Public AI-as-a-Service (AIaaS) is a promising next-generation computing paradigm that attracts resource-limited mobile users to outsource their machine learning tasks. However, the time delay between cloud/edge servers and end users makes it hard for real-time mobile artificial intelligence applications. In this demonstration, we present EmotionTracker, a real-time mobile facial expression tracking system combining AIaaS and mobile local auxiliary computing, including facial expression tracking and the corresponding task offloading. Mobile facial expression tracking iteratively estimates the facial expression with the help of sparse optical flow and neural network. Task offloading dynamically estimate the moment of task offloading with machine learning method. According to the results in a real-world environment, EmotionTracker successfully fulfills the mobile real-time facial expression tracking requirements.
引用
收藏
页码:4530 / 4532
页数:3
相关论文
共 8 条
[1]   Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications [J].
Adrian Corneanu, Ciprian ;
Oliu Simon, Marc ;
Cohn, Jeffrey F. ;
Escalera Guerrero, Sergio .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (08) :1548-1568
[2]  
[Anonymous], 2020, LIUXUNCHENGLXC EMOTI
[3]  
Hassan G., 2016, 2016 IEEE WIR COMM N, P1, DOI DOI 10.1109/WCNC.2016.7564975
[4]   Cloud-Assisted Speech and Face Recognition Framework for Health Monitoring [J].
Hossain, M. Shamim ;
Muhammad, Ghulam .
MOBILE NETWORKS & APPLICATIONS, 2015, 20 (03) :391-399
[5]   Energy-Aware Mobile Edge Computing and Routing for Low-Latency Visual Data Processing [J].
Huy Trinh ;
Calyam, Prasad ;
Chemodanov, Dmitrii ;
Yao, Shizeng ;
Lei, Qing ;
Gao, Fan ;
Palaniappan, Kannappan .
IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (10) :2562-2577
[6]  
Inchul Song, 2014, 2014 IEEE International Conference on Consumer Electronics (ICCE), P564, DOI 10.1109/ICCE.2014.6776135
[7]  
McDuff D., 2016, P 2016 CHI C HUM FAC, P3723, DOI 10.1145/2851581.2890247
[8]   Real-time Mobile Facial Expression Recognition System - A Case Study [J].
Suk, Myunghoon ;
Prabhakaran, Balakrishnan .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, :132-137