QCD Topological Susceptibility from the Nonlocal Chiral Quark Model

被引:0
作者
Nam, Seung-Il [1 ,2 ]
Kao, Chung-Wen [3 ,4 ]
机构
[1] Pukyong Natl Univ, Dept Phys, Busan 48513, South Korea
[2] APCTP, Pohang 37673, South Korea
[3] Chung Yuan Christian Univ, Dept Phys, Chungli 32023, Taiwan
[4] Chung Yuan Christian Univ, Ctr High Energy Phys, Chungli 32023, Taiwan
关键词
QCD topological susceptibility; Topological charge-density operator; Nonlocal chiral-quark model; Bosonization; Liquid-instanton configuration; Large-N-c limit; Witten-Veneziano formula; Leutwyler-Smilga formula; SYMMETRY-BREAKING; INSTANTON VACUUM; U(1) PROBLEM; SPECTRUM; FLAVORS; MASS;
D O I
10.3938/jkps.70.1027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the quantum chromodynamics (QCD) topological susceptibility. by using the semi-bosonized nonlocal chiral-quark model (SB-NL(X)QM) for the leading large-N-c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass (m(u), (d), m(s)) approximate to (5, 135) MeV. To compute X, we derive the local topological charge-density operator Q(t) (x) from the effective action of SB-N(X)QM. We verify that the derived expression for X in our model satisfies the WittenVeneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with (p) over bar= 1/ 3 fm and (R) over bar = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain X = (167.67MeV)(4), which is comparable with the empirical value X = (175 +/- 5MeV) 4 whereas it turns out that.QL = (194.30MeV) 4 in the quenched limit. Thus, we conclude that the value of. will be reduced around 10 similar to 20% by the dynamical-quark contribution.
引用
收藏
页码:1027 / 1036
页数:10
相关论文
共 45 条
  • [1] Topological susceptibility at zero and finite T in SU(3) Yang-Mills theory
    Alles, B
    DElia, M
    DiGiacomo, A
    [J]. NUCLEAR PHYSICS B, 1997, 494 (1-2) : 281 - 292
  • [2] Unquenched QCD simulation results
    Aoki, S
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 3 - 18
  • [3] Quark mass effects on the topological susceptibility in QCD
    Bali, GS
    Eicker, N
    Lippert, T
    Neff, H
    Orth, B
    Schilling, K
    Struckmann, T
    Viehoff, J
    [J]. PHYSICAL REVIEW D, 2001, 64 (05):
  • [4] A UA (1) symmetry restoration scenario supported by the generalized Witten-Veneziano relation and its analytic solution
    Benic, S.
    Horvatic, D.
    Kekez, D.
    Klabucar, D.
    [J]. PHYSICS LETTERS B, 2014, 738 : 113 - 117
  • [5] η′ multiplicity and the Witten-Veneziano relation at finite temperature
    Benic, S.
    Horvatic, D.
    Kekez, D.
    Klabucar, D.
    [J]. PHYSICAL REVIEW D, 2011, 84 (01):
  • [6] Topological susceptibility on the lattice and the three-flavour quark condensate
    Bernard, Veronique
    Descotes-Genon, Sebastien
    Toucas, Guillaume
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [7] Axion cosmology, lattice QCD and the dilute instanton gas
    Borsanyi, Sz.
    Dierigl, M.
    Fodor, Z.
    Katz, S. D.
    Mages, S. W.
    Nogradi, D.
    Redondo, J.
    Ringwald, A.
    Szabo, K. K.
    [J]. PHYSICS LETTERS B, 2016, 752 : 175 - 181
  • [8] Instantons and the singlet coupling in the chiral quark model
    Cheng, TP
    Li, LF
    [J]. PHYSICAL REVIEW D, 1999, 59 (09)
  • [9] Topological susceptibility in 2+1 flavors lattice QCD with domain-wall fermions
    Chiu, Ting-Wai
    Hsieh, Tung-Han
    Tseng, Po-Kai
    [J]. PHYSICS LETTERS B, 2009, 671 (01) : 135 - 138
  • [10] EVIDENCE FOR THE ROLE OF INSTANTONS IN HADRON STRUCTURE FROM LATTICE QCD
    CHU, MC
    GRANDY, JM
    HUANG, S
    NEGELE, JW
    [J]. PHYSICAL REVIEW D, 1994, 49 (11): : 6039 - 6050