HOAH: A Hybrid TCP Throughput Prediction with Autoregressive Model and Hidden Markov Model for Mobile Networks

被引:12
|
作者
Wei, Bo [1 ]
Kanai, Kenji [2 ]
Kawakami, Wataru [1 ]
Katto, Jiro [2 ]
机构
[1] Waseda Univ, Grad Sch Fundamental Sci & Engn, Tokyo 1698555, Japan
[2] Waseda Univ, Tokyo, Japan
关键词
throughput prediction; Autoregressive Model; Hidden Markov Model; mobile networks; support vector machine; TIME-SERIES;
D O I
10.1587/transcom.2017CQP0007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Throughput prediction is one of the promising techniques to improve the quality of service (QoS) and quality of experience (QoE) of mobile applications. To address the problem of predicting future throughput distribution accurately during the whole session, which can exhibit large throughput fluctuations in different scenarios ( especially scenarios of moving user), we propose a history-based throughput prediction method that utilizes time series analysis and machine learning techniques for mobile network communication. This method is called the Hybrid Prediction with the Autoregressive Model and Hidden Markov Model (HOAH). Different from existing methods, HOAH uses Support Vector Machine (SVM) to classify the throughput transition into two classes, and predicts the transmission control protocol (TCP) throughput by switching between the Autoregressive Model (AR Model) and the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). We conduct field experiments to evaluate the proposed method in seven different scenarios. The results show that HOAH can predict future throughput effectively and decreases the prediction error by a maximum of 55.95% compared with other methods.
引用
收藏
页码:1612 / 1624
页数:13
相关论文
共 50 条
  • [31] Failure Event Prediction Using Hidden Markov Model Approaches
    Vrignat, Pascal
    Avila, Manuel
    Duculty, Florent
    Kratz, Frederic
    IEEE TRANSACTIONS ON RELIABILITY, 2015, 64 (03) : 1038 - 1048
  • [32] Lipstick color suggested using hybrid hidden Markov model
    Khatreja, Aanchal
    Mulay, Preeti
    CARDIOMETRY, 2022, (22): : 421 - 428
  • [33] Hidden markov model for the prediction of transmembrane proteins using MATLAB
    Chaturvedi, Navaneet
    Shanker, Sudhanshu
    Singh, Vinay Kumar
    Sinha, Dhiraj
    Pandey, Paras Nath
    BIOINFORMATION, 2011, 7 (08) : 418 - 421
  • [34] Dynamic Hidden Markov Model for Metropolitan Traffic Flow Prediction
    Li, Zihan
    Chen, Cailian
    Min, Yang
    He, Jianping
    Yang, Bo
    2020 IEEE 92ND VEHICULAR TECHNOLOGY CONFERENCE (VTC2020-FALL), 2020,
  • [35] A hybrid fault prediction method for control systems based on extended state observer and hidden Markov model
    Yang, Dezhen
    Hai, Xingshuo
    Ren, Yi
    Cui, Jingjing
    Li, Kanjing
    Zeng, Shengkui
    ASIAN JOURNAL OF CONTROL, 2023, 25 (01) : 418 - 432
  • [36] A transitional Markov switching autoregressive model
    Cheng, J.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (10) : 2785 - 2800
  • [37] Autoregressive-moving-average hidden Markov model for vision-based fall prediction-An application for walker robot
    Taghvaei, Sajjad
    Jahanandish, Mohammad Hasan
    Kosuge, Kazuhiro
    ASSISTIVE TECHNOLOGY, 2017, 29 (01) : 19 - 27
  • [38] A joint parametric prediction model for wireless internet traffic using Hidden Markov Model
    Maheshwari, Sumit
    Mahapatra, Sudipta
    Kumar, C. S.
    Vasu, K.
    WIRELESS NETWORKS, 2013, 19 (06) : 1171 - 1185
  • [39] A joint parametric prediction model for wireless internet traffic using Hidden Markov Model
    Sumit Maheshwari
    Sudipta Mahapatra
    C. S. Kumar
    K. Vasu
    Wireless Networks, 2013, 19 : 1171 - 1185
  • [40] Splice sites detection by combining Markov and hidden Markov model
    Zhang, Quanwei
    Peng, Qinke
    Li, Kankan
    Kang, Xuejiao
    Li, Jing
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 1531 - +